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TECHNICAL NARRATIVE

SUMMARY

During FY 92, work was performed in five project areas summarized briefly as follows. A more
detailed account is provided in subsequent sections.

(a) The Role of Bubbles in Ocean Acoustics. Significant research progress was accomplished
in the latest project period. This progress is documented in the format pro=cribed for rc,, ,
the Ocea,-, Acoustics Program at ONR, and is appended. One detailed publication is also
attached.

(b) Acoustically Active Surfaces. This research began in 1988 with an effort to develop smart
acoustically active coatings using piezorubber and/or PVDF. The work with smart coatings has
expanded to include three aspects. First concerns the development of actuators and sensors,
especially those for use at low frequencies; the second concerns the study of different control
algorithms; and the third involves the study of the coupling between the active surface and the
medium. The work in these three areas is discussed in this report.

(c) Propagation Physics. This research addresses the physics of stochastic and deterministic
sound propagation and scattering in the ocean. The principal investigator was not at the National
Center for Physical Acoustics after January 1, 1992. However, during the first six months of
1992 the continuous-wave part of the research was completed and the results were written and
submitted for publication in the Journal of the Acoustical Society of America. A preprint of the
article serves here as the final report, as previously agreed in the proposal.

(d) Transducer Development. Most of the year was spent on transducer development and in
completing the Ph.D. Dissertation of Dehua Huang; however, some of the time was spent in
completing research supported in previous years under Navy Programs. These are included in this
final report.

(e) Graduate Fellowships. The fellowship program was developed with the hope that
outstanding undergraduates would be identified and attracted to the University of Mississippi for
specialization in acoustics at the National Center for Physical Acoustics. We believe that this
program has given more visibility to acoustics as a specialization in physics and engineering, and
that visibility is in the best interests of the Navy. The report on the success of this program as
well as the work of the five students supported during FY 92 follows.



The Role of Bubbles in Ocean Acoustics

The Role of Bubble Clouds in Low Frequency Scattering from the Ocean Surface

Principal Investigator: Lawrence A. Crum

Research Accomplished in 1992:

Significant research progress was accomplished in the latest project period. This progress

is documented in the format proscribed for reports to the Ocean Acoustics Program at ONR, and

is appended to this communication. One detailed publication is also attached.



Lawrence A. Crum
Ronald A. Roy

Papers Published in Refereed Journals

L Articles

1. "The underwater sounds of precipitation," L.A. Crum, R.A. Roy and A. Prosperetti,

Naval Research Reviews, XLIV, 2 (1992).

2. "'Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble," D.F.

Gaitan, L.A. Crum, C.C. Church and R.A. Roy, J. Acoust. Soc. Am. 91(6), 3166-3183,

1992.

3. "Low frequency scattering from submerged bubble clouds', R. Roy, W. Carey, M.

Nicholas, J. Schindall and L. A. Crum, J. Acoust. Soc. Am. 2993 (1992).

4. "Acoustically forced oscillations of air bubbles in water: Experimental results", R. G.

Holt and L. A. Crum, J. Acoust. Soc. Am.,91, 1924 (1992).

5. "Collective oscillations of a bubble cloud as a source of underwater ambient noise in

the ocean", W. S. Yoon and L. A. Crum, J. Acost. Soc. Korea, 10, 47 (1991).

IL Proceedings

1. "Acoustic backscattering from a cylindrical bubble cloud in water", S. W. Yoon, K. J.

Park, L. A. Crum and R. A. Roy, Proceedings: Western Pacific Acoustic Conference, IV,

462 (1991).

2. "Low frequency scattering from resonant bubble clouds", R. Roy, W. Carey, M.

Nicholas, and L. Crum, Proceedings of 14th ICA, 2, C3-5, Beijing, China, August, (1992).

3. "Underwater acoustic backscatter from a cylindrical bubble cloud", S. W. Yoon, K. J.

Park and L. A. Crum, Proceedings of the 14th ICA, 2, C3-1,Beijing, China, August,

0992).



Lawrence A. Crum

Ronald A. Roy

Papers in Refereed Publications

(cont.)

4. "The acoustic emissions from bubble plumes generated by an impacting water jet", A.

Kolaini, C. C. Church, R. A. Roy and L. A. Crum, Proceedings of the 14th ICA, 2, C3-4,

Beijing, China, August, (1992)

5. "Enhancement of hydrodynamic flow noise radiation by the regulation of air bubbles

in a turbulent water jet", M. S. Korman, R. A. Roy and L. A. Crum, Proceedings of the

14th ICA, 1, B6-1,Beijing, China, August, 0992).
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Lawrence A. Crum

Ronald A. Roy

Papers Submitted to Refereed Journals

L Articles

1. "Low frequency underwater sound generation by an impacting transient cylindrical

water jet", A. Kolaini, R. Roy, L. Crum and Mao Yi, J. Acoust. Soc. Am., (submitted for

publication).

2. "Bubble production by capillary-gravity waves", A. Kolaini, et al., J. Acoust. Soc.

Am. (submitted for publication).

3. "The production of high-frequency ambient noise by capillary waves," R. A. Roy, A.

R. Kolaini and L. A. Crum, In Natural Physical Sources of Underwater Sound, ed. by B.

Kerman, Kluwer Acad. Pub., Dordrecht, Netherlands, in press.

4. "Collective oscillations in a bubble cloud," S. W. Yoon, K. J. Park, L. A. Crum, M.
Nicholas, R. A. Roy, A. Prosperetti and N. Q. Lu, In Natural Physical Sources of

Underwater Sound, ed. by B. Kerman, Kluwer Acad. Pub., Dordhrecht, Netherlands, in

press.

5. "Sound emissions by a laboratory bubble cloud", M. Nicholas, R. Roy, L. Crum, H.

Oguz and A. Prosperetti, J. Acoust. Soc. Am., (submitted for publication).

HI. Proceedings

1. "Sound scattering from microbubble distributions near the sea suiface," W. Carey and
R. A. Roy, Proceedings: The SACLANT Ocean Reverberation Symposium, Kluwer

Acad., Dordrecht, Netherlands, in press.

2. "Low Frequency resonance backscatter from near-surface bubble clouds", L. A. Crum,

J. A. Schindall, R. A. Roy, and W. M. Carev, Proceedings of the SACLANT Cpn1fe'cn.

on Low Frequency Active Sonar (to be published).
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Ronald A. Roy

Books or Chapters

none
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Ronald A. Roy

Technical Reports

1. "Lake Seneca Bubble Scattering Quick Look", W. Carey and R. A. Roy, NUWC Tech.

Report (in press).
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Ronald A. Roy

Invited Papers

1. "Low-frequency backscatter from dense submerged bubble clouds," R.A. Roy, W.

Carey, M. Nicholas, L.A. Crum and J. Schindall, presented at the special session on
Acoustical Studies of Upper Ocean Processes at the 12 3rd meeting of the Acoustical

Society of America, Salt Lake City, UT, May, 1992.

2. "Laboratory experiments on bubble cloud oscillations," L.A. Crum, R.A. Roy, M.

Nicholas and A. Kolaini, presented at the special session on Acoustical Studies of Upper

Ocean Processes at the 12 3 1d meeting of the Acoustical Society of America, Salt Lake
City, UT, May 1992.

3. "Surface scattering from microbubble distributions near the sear surface," W. M.

Carey, R. R. Goodman and R. A. Roy, presented at the SACLANT Ocean Reverberation

Symposium, La Spezia, Italy, May 1992.

4. "The acoustic emissions from bubble plumes generated by an impacting transient

water jet," A. R. Kolaini, C. C. Church, R. A. Roy and L. A. Crum, presented at the

meeting of the 14 th ICA, Beijing, China, September 1992.

5. "Low frequency scattering from resonant bubble clouds", R. Roy, W. Carey, M.

Nicholas, and L. Crum, presented at the meeting of the 14th ICA, Beijing, China,

August, (1992).



Lawrence A. Crum

Ronald A. Roy

Corntributed Papers

1. "Air bubble interaction with a submerged axisymmetric water jet," S. M. Cordry, R.
A. Roy and L. A. Crum, presented at the 122nd meeting of the Acoustical Society of

America, Houston, TX, November, 1991.

2. "Sound velocity measurements in a bubble cloud," S. A. Cheyne and R. A. Roy,

presented at the 12 2 nd meeting of the Acoustical Society of America, Houston, TX,

November, 1991.

3. "Collective oscillations in fresh and salt water bubble clouds," R. A. Roy, M.
Nicholas, K. Markiewicz and L. A. Crum, presented at the 12 2 nd meeting of the

Acoustical Society of America, Houston, TX, November, 1991.

4. "Low-frequency acoustic scattering from a submerged bubble cloud," R. A. Roy, L. A.

Crum, M. Nicholas, J. Schindall, W. A. Carey, W. A. Konrad, W. J. Marshall, E. C.

Monahan and A. Prosperetti, presented at the 12 2 nd meeting of the Acoustical Society of
America, Houston, TX, November, 1991.

5. "Collective oscillations of a bubble cloud as a source of underwater ambient noise in

the ocean," R. A. Roy, S. W. Yoon, M. Nicholas, K. J. Park and L. A. Crum, presented at

Internoise 91, Sydney, Australia, November, 1991.

6. "Acoustic backscattering from a cylindrical bubble cloud in water," S. W. Yoon, K. J.
Park, L. A. Crum, and R. A. Roy, presented at the Western Pacific Acoustic Conference

IM, Sydney, Australia, November, 1991.

7. "A laboratory experiment on nonlinear coupling between surface and volume modes

of a bubble," Y. Mao, L. A. Crum and R. A. Roy, presented at the 12 3 nd meeting of the

Acoustical Society of America, Salt Lake City, UT, May 1992.
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Ronald A. Roy

Contributed Papers

(cont)

8. "Enhancement of hydrodynamic flow noise radiation by the regulation of air bubbles

in a turbulent flow," M. S. Korman, R. A. Roy and L. A. Crum, presented at the 12 3 nd

meeting of the Acoustical Society of America, Salt Lake City, UT, May 1992.

9. "Acoustic emissions from toroidal bubbles", A. Kolaini, M. Nicholas and L. A. Crum,

presented at the 123rd meeting of the Acoustical Society of America, Salt Lake City, UT,

May, 1992.

10. "Acoustic characteristics of laboratory breaking waves", A. R. Kolaini and L. A.

Crum, presented at the 124th meeting of the Acoustical Society of America, New

Orleans, LA, October, 1992.

11. "Sound scattering from near-surface bubble clouds," J. Schindall, W. M. Carey, R. A.

Roy, L. A. Crum and M. Nicholas, presented at the 12 4 th meeting of the Acoustical

Society of America, New Orleans, LA, October 1992.

12. "Acoustic phase velocity measurements in a bubbly liquid using a fiber optic laser

Doppler velocimeter," S.A. Cheyne, C.T. Stebbings and R.A. Roy, presented at the 12 4 th

meeting of the Acoustical Society of America, New Orleans, LA, October 1992.



Lawrence A. Crum
Ronald A. Roy

Conferences Attended

1. Acoustical Society of America, Houston, TX, 4-8 November, 1991 (LAC, RAR)

2. Acoustical Society of America, Salt Lake City, UT, 11-15 May, 1992 (LAC, RAR)

3. ONR SRP Status Meeting, Victoria, BC, 19-21 May, 1992 (LAC)

4. SACLANT Symposium on Sea Surface Sound, La Spezia, Italy, 25-29 May, 1992

(LAC, RAR)

5. International Conference on Acoustics, Beijing, China, 7-15 September, 1992 (LAC)



Lawrence A. Crum
Ronald A. Roy

Patents Awarded

none



Lawrence A. Crum

Ronald A. Roy

Patent Applications

none



Lawrence A. Crum
Ronald A. Roy

Honors and Awards

* Ronald A. Roy was elected to Fellowship in the Acoustical Society
of America.

* Lawrence A. Crum was awarded a Significant Alumni Achievement
Award by Ohio University.



Lawrence A. CrumRonald A. Roy

Graduate Students

Name: Christopher Hobbs

Citizenship: USA

Date of Graduation: August, 1992

Type of Thesis: Principally Experimental

Thesis Title: Propagation of Sound through a Bubble Screen

Thesis Objective: To determine the acoustical properties of bubble-filled geometrical
shapes: Bubble screens are used in certain applications to "screen" the noise produced by
naval vessels from radiating, by introducing a barrier that is nearly impenetrable to sound
propagation. We determined that the screen itself may resonant, however, through the
collective oscillations of the bubbles contained within the screen.

Name: Kenneth Markiewicz

Citizenship: USA

Date of Graduation: August, 1992

Type of Thesis: Principally experimental

Thesis Title: Collective Oscillations of Bubble Columns and Screens

Thesis Objective: To determine the collective-oscillation frequencies of specified
geometries of bubble columns and screens: Clouds of bubbles can resonate at
frequencies characteristic of the geometrical shape and acoustic properties of the cloud,
which reduce the natural frequencies to values much below that of the individual bubble
resonances. Mr. Schindall will study this problem and its application to surface scattering.

Name: Jeffrey Schindall

Citizenship: USA

Estimated Date of Graduation: May, 1995

Type of Thesis: Both experimental and theoretical

Thesis Title: Scattering from Bubble Clouds

Thesis Objective: To determine the scattering characteristics of bubble clouds: It has
been demonstrated that bubble clouds can resonate at frequencies that are associated with
their collective modes. These frequencies can be quite low and depend upon the total
volume of air in the cloud and the geometrical shape. Thus, these objects can act as false
target or be employed as decoys or for calibration of active sonars.



Lawrence A. Crum
Ronald A. Roy

Graduate Students
(cont.)

Name: Yi Mao

Citizenship: PRC

Estimated Date of Graduation: August, 1993

Type of Thesis: Both theoretical and experimental

Thesis Title: Free oscillations of Gas Bubbles in Liquids

Thesis Objective: To determine the acoustical properties of gas bubbles at reduced
pressures and elevated temperatures: It has been proposed that the surface waves on
bubbles could nonlinearly couple into volume oscillations, thus converting a nonradirting
energy source into a radiating one. This research is investigating the conditions under
which this process is upheld.

Name: Sean Cordry

Citizenship: USA

Estimated Date of Graduation: May, 1994

Type of Thesis: Both theoretical and experimental

Thesis Title: Noise production by Bubble Fission and Fusion.

Thesis Objective: To determine the conditions under which bubbles coalesce and break
up, and the noise emissions associated with this behavior. When bubbles are created in
the ocean, they emit sound, and t'ius contribute to the ambient background; it is thought
that adult bubbles are relatively silent. However, if the total energy of a bubble is
changed by bubble fission or fusion, then they can radiate this additional energy. The
conditions under which adult bubbles become noise are being examined.



Lawrence A. Crum

Ronald A. Roy

Postgraduate Students

Name: Michael Nicholas

Citizenship: USA

Status: Completed project; now employed at NRL

Work Objective: To undertake a systematic study of collective oscillations of bubble
clouds: The concept of collective oscillations of bubble clouds was not demonstrated
until 1988, and has been examined principally since that time through the work of Dr.
Nicholas.

Name: Ali Kolaini

Citizenship: Iran (currently has green card, and will soon be permanent resident)

Status: Completed project; now employed as a research scientist at NCPA

Work Objective: To undertake a systematic study of the noise produced by breaking
waves. Dr. Kolaini supervised the construction of a unique laboratory facility in which
breaking waves can be produced in an anechoic tank. His research has lead to a much
more complete understanding of this important phenomenon.



Lawrence A. Crum
Ronald A. Roy

Transitions

1. Dr. William Carey, DARPA, (703) 696-2339: Dr. Carey has expressed an interest in
applying the results of our studies of bubble cloud scattering to more applied projects
involving the development of decoys and calibrated targets. An SBIR has been issued by
DARPA and we are collaborating with Quest Integrated, Inc., to develop these decoys
and targets.

2. Mr. Tom Warfield, ONT, (703) 696-5121; Mr. Warfield, a Program Manager at ONT,
is planning to fund us to work with NRL to extend our scattering measurements of bubble
clouds to a more general understanding of low frequency acoustic scattering from the sea
surface. We will be working with Dr. Fred Erskine (202) 767-3149 and others in the
NRL group to undertake these experiments in Exuma Sound later in 1993.

'A Dr ,,,-e Sevik, DTRC, (410) 227-1335; Dr. Sevik, an Associate Director at David
Taylor has expressed a keen interest in our studies of transmission through bubble
screens. This facility pioneered the concept of bubble maskers and are interested in our
discoveries of the low frequency emissions that might occur for these screens--due to
collective oscillations. We are preparing a proposal for their consideration.

4. Dr. Michael Nicholas, NRL, (202) 767-3149; Dr. Nicholas was a Postdoctoral
Research Associate under our direction and is now employed in the Underwater
Acoustics Branch of NRL. He will be assisting in the analysis of the CST data and will
likely transition insight gained in our laboratory from basic research studies relating to
bubble cloud scattering directly to his more applied work at NRL.

5. Dr. Paul Hwang, Quest Integrated, Inc., (206) 872-9500; Dr. Hwang collaborated with
us in the preparation of a SBIR proposal to DARPA in which calibrated acoustical targets
and decoys are to be developed based on the theory of the collective oscillations of
bubble clouds. Later phases of this work, if funded, will involve the construction of these
targets for use in the fleet. This particular project demonstrates graphically how ideas and
concepts developed in 6.1 research can be transitioned directly into the fleet within a very
short time.



LOW FREQUENCY RESONANCE BACKSCATTER FROM NEAR-SURFACE
BUBBLE CLOUDS

L. A. Crum, J. A. Schindall, and R. A. Roy
Applied Physics Laboratory

University of Washington, Seattle WA 98105 USA
and

W. M. Carey
Advanced Research Projects Agency

3701 N. Fairfax Drive
Arlington, VA 22203-1714 USA

Abstract

When active sonar systems are used to insonate the sea surface, anomalous
scattering is observed in the form of enhanced backscatter, and more im-
portantly, in the form of discrete, bright echoes. The most plausible ex-
planation for these effects is the increased scattering resulting from the
presence of bubble plumes and clouds, produced near the surface by
breaking waves. This paper describes some preliminary calculations of
the backscattered target strengths expected on the basis of resonance
scattering from bubble clouds.

1. Introduction

In tests of low frequency active sonar systems, false targets have arisen when insonation
of the sea surface is attempted, especially in circumstances of high sea state [Gauss et al.,
1992]. The origin of these false targets is still unclear, although the most likely candidates
are assemblages of gas bubbles in an acoustically compact form. Bubble clouds are a
common occurrence in the near surface of the ocean when breaking waves are present;
these clouds are likely to result from bubble entrainment during wave breaking.
Collections of bubbles in diffuse concentrations in the form of plumes have been ob-
served at depths of several meters [Monahan, 1971; Thorpe, 1982; Farmer and Vagle,
1988], presumably drawn to these depths as a result of convective flows such as Langmuir
circulation and thermal mixing [Thorpe, 1982]. Significant acoustic backscattering from
the sea surface can result either from these small, relatively dense clouds that are near the
surface, or from the larger, relatively diffuse plumes that can extend to greater depths.

It has been shown that the available surface scattering data [Chapman-Harris, 1962;
Ogden and Ersline, 1992] can be accounted for in terms of either weak scattering (the
well-known Born Approximation) from deep, diffuse bubble plumes generated by
Langmuir circulation [MacDonald, 1991; Henyey, 1991], or by resonance scattering from
higher void fraction clouds near the surface [Prosperetti and Sarkar, 1992]; it is the con-
tention in this paper that the observed large target strength false echoes result principally
from detatched bubble clouds; furthermore, we present in this paper the range of bubble
cloud and environmental parameters that are likely to result in these bright targets.



2. Background

The attempts to characterize acoustic scattering from the ocean surface in the absence of
bubble clouds, due to Bragg Scattering alone, have resulted in significant disagreement
between the calculations [McDaniel, 1987] and the experimental data [Chapman and
Harris, 1962; Ogden and Erskine, 1992]. Consequently, MacDonald [1991] and Henyey
[1991] have used weak scattering theory (Born approximation) to obtain the surface
backscatter in the presence of "tenuous" (void fractions less than, say, 10-3 %) bubble
plumes of various configurations and orientations. Their calculations assume that the
clouds are sufficiently diffuse so that multiple scattering can be ignored; consequently,
the scattered sound energy is mostly specular. Their results indicate that if one wishes
only to account for the average surface backscatter, then the tenuous bubble plumes gen-
erated by Langmuir circulation are sufficient. However, it is not yet clepr whether these
approaches can account for the presence of the "bright echoes" or "hot spots" observed in
the critical sea tests and described by Gauss et al., [1992]. Thorsos [1992] has examined
the effect of a rough surface and noted that focusing from appropriate contours can signif-
icantly enhance the calculated backscatter from tenuous clouds. However, we shall fol-
low a different approach and assume that there are concentrations of bubbles in the form
of clouds that are of sufficient void fraction to lead to a resonance oscillation of the cloud
itself, thus resulting in high target strengths at low frequencies.

These cloud oscillations are called "collective oscillations" and represent a type of acous-
tic backscatter that is fundamentally different from that described by Born-approxima-
tion, weak-scattering theory. Collective effects occur when ihe acoustic wavelength is
considerably larger than the dimensions of the cloud and the resonance frequency of the
individual bubbles comprising the cloud is much higher than the insonation frequency;
thus, all the bubbles oscillate essentially in phase. Because the compressibility of the
cloud is similar to that for a single gas bubble while the induced mass is associated with
that of the entire cloud, the oscillation frequency can be quite low, and particularly, much
lower than that of an individual gas bubble. An alternative but equivalent explanation is
that because the phase speed in the bubbly mixture is greatly reduced (sometimes even
below that for a pure gas), the oscillation frequency is correspondingly reduced.

2.1 Collective Oscillations

Carey and Browning, [1988] and Prosperetti [1988] independently suggested that bubble
clouds whose geometrical dimensions were'small with respect to a wavelength could be-
have as a compact scatterers. Evidence for the existence of collective oscillations have
been firmly established by laboratory work [Yoon, er al., 1991; Nicholas, et al., 1992; Lu,
et al., 1991], and also by field experiments in a large fresh water lake [Roy, et al., 1992].
Furthermore, recent data by Farmer and Ding, [19921 on sources of ambient noise in the

-ocean provide strong support for the existence of low frequency emissions indicative of
collective oscillations. If these clouds are observed to radiate at low frequencies by col-
lective effects then it is likely that they would also act as effective scatterers of low fre-
quency sound.

2.2 Preliminary Results

We have performed some preliminary experiments of the low frequency scattering char-
acteristics of bubble clouds. The test plan and some initial results are described in a pre-
vious SACLANT Symposium report [Carey and Roy, 1993], and in a more widely dis-
tributed publication [Roy, et al., 1992]; they are shown for completeness in Fig. 1.
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The principal results of this experimental study can be summarized as follows:

•Artificially generated bubble clouds of ellipsoidal geometry and about 0.5 meter
in diameter and 1.0 meter in length were created at a depth of about 90 meters in a fresh
water lake. The clouds were insonifled with both a directed beam (parametric array) and
an omnidirectional conventional source over a frequency range from 200 Hz to approxi-
mately 14 kHz.

•Measurements of the target strength (TS) as a function of frequency show rela-
tive maxima at approximately 0.3 and 1.3 kHz, as well as several other (higher) frequen-
cies. The amplitude of these peaks is quite large and indicative of resonance effects.

• The resonance frequencies of the individual bubbles comprising the clouds areon the order of 2-3 kor, and are so much larger than the low frequency maximum that

these low frequency peaks are most likely dye to collective oscillation resonances. If the
cloud is treated as an acoustically compact object with a velocity of sound significantly
different than that of water, then the fundamental (monopole) resonance frequency de-
pends solely upon its volume, and its effective acoustic impedance. Using a modified
aMinnaert formula, a calculated resonance frequency of about 324 Hz can be obtained for
the lowest peak; this value compares favorably with the measured resonance of 310 Hz
[Roy, et al., 1992; Carey and Roy, 1993]. ko

• The target strength of these clouds insonified near resonance is on the order of 0
db. Thus, they represent bright targets and compact scatterers. Calculations of the target
strength based on resonance scattering [Roy, et al., 1992; Carey and Roy, 1993] suggest

values on this order.

The success of these preliminary studies has emboldened us to attempt a more systematic
and detailed analysis of low frequency resonance scattering from near-surface bubble
clouds; our progress along these lines is described in the sections to follow.



3. Approach

We follow the approach of Morse and Ingard [1968] in which we assume a plane wave
incident on a compliant sphere of radius a, surrounded by a continuous medium of den-
sity and sound speed p and c respectively. Likewise, we consider the sphere to be a
homogeneous medium of density and sound speed p and c respectively. (It should be
noted that the subscript "t " refers to the bubbly mixture, not the pure liquid.) We shall
assume that the target is illuminated by plane waves and that it radiates a spherically out-
going acoustic wave.

We shall also assume that the sphere (bubble cloud) is composed of many bubbles; thus,
the medium is dispersive with effective density and wave number given by,

P, =/P', + ( - P)p
2 + 24n~o 2ar , (1)

k = k2 +2
2o_60 - + 2ibo)

where k = o) / c is the wave number in the liquid, a is the radius of individual bubbles
(considered to monodispersed in size), rl is the numper of bubbles per unit volume, oJo is
the resonance frequency of the bubbles, P3 = 4"ia / 3 is the void fraction, and b is the
damping constant [Commander and Prosperetti, 1989; Lu, et al, 1990]. Foro) << co,
one can show that the real portion of the complex phase speed in the mixture is given by,

2 ____P__ (2)

c2 P

Here, y is the ratio of specific heats of the gas. It should be noted that for 13 not too small
or P. not too large, the low frequency phase speed in Eq. (2) reduces to the more famil-
iar expression,

cl= rotp. (3)

For the scattering problem in an infinite medium we solve the Helmholtz equation subject
to the boundary conditions of continuous pressure and normal velocity across the surface
of the sphere.

V2 p +k 2 p =-f,(.). (4)

We take the solution to be a superposition of incident plane wave and scattered waves:

PO) = PS + p where P. =A&e-k'". (5)

Morse and Ingard used an integral Green's function method to demonstrate that the solu-
tion for the exterior scattered wave in spherical coordinates is represented by an expan-
sion in Legendre polynomials and spherical Hankel functions with appropriate coeffi-
cients,



pj(r) = -'A >i"(2m + 1)(1 + Rm )Pm,(cosO)hm(kr)
2 ,._O

A e ir (6)
ri (2m + 1)(l + R.,)P,,,(cosO0)

"-' 2k r ,,m=0

where the asymptotic form is given in the far field. The coefficient Rm satisfies the
boundary.conditions and describes the reflectivity of the sphere where,

) 2 jm (kac)++ iLmJm(kac) and f i j(ka) is the specific

( 2hkac1R+ ifmh.h(kac)' p1C L j.(keac) s

admittance of the surface. In this study we make use of the limiting form of c, given in
Eq. (2) which is not a complex phase speed and hence does not take into account damp-
ing from the bubbles within the cloud.

We are primarily interested in the backscattering; hence, we take 0 = ir. In the free-field,
the TS is given by [Urick,1967],

TS, =20logP 0 gplog(. ,L ) I (7)

Carey and Roy [1993] have shown that for small ka,, the monopole term in Eq. (6) can
be approximated by

i Pitt (8)A 3r (3r PP ( - (kPn)')(8

At resonance, this leads to

I~~ 3o = -P••-• (9)

.which is a modified form of Minnaert's equation for bubble resonance.

The above equations allow us to make some observations concerning the interdependence
of some of the more important parameters, viz,

0 The effective phase speed in the bubbly mixture increases with depth, for a
fixed volume fraction P3; likewise, for fixed ac, the resonance frequency of the cloud,
o0c, also increases with depth.

• As /3 decreases/increases, both oc and c, increases/decreases (other
parameters held fixed).



As a, decreases/increases, o)c increases/decreases (other parameters held
fixed).

Furthermore, we can also deduce how changes in some of these parameters affect the TS?
At resonance, Eq(8) reduces to

A ,(Pc -P 1. (10)

Thus, as the resonance frequency decreases, or the void fraction becomes larger, or the
size of the cloud increases, the TS increases.

We now turn to a determination of the TS for a variety of environmental and acoustic
conditions. In our calculations, we choose to obtain the resonance frequencies by numer-
ical methods. We will approximate Eq. (6) by truncating the series at the m = 0
monopole term, since for the frequencies of interest in this paper, the wavelength of
sound is many times greater than the bubble cloud radius and the higher order terms do
not contribute to the lowest resonance.

To solve the problem of scattering from targets near the ocean surface we make use of the
method of images; in Fig 2 below a diagram is shown of our approach.

Image 
e pa. 

e

Image

Spheri id MW
p.e

Target' Receiver

Fig. 2. Diagram of the theoretical model used in the determination of the scattered target
strengths. -

Here we treat the target as a point scatterer a distance d below a pressure release surfacewith reflectivity coefficient p. (-1< p. <0). The reflection coefficient describes the rough-

ness of the sea surface where p. = -1 corresponds to a smooth pressure release surface and
p.t = 0 corresprnds to an extremely rough surface (effectively equivalent to an infinite
medium); realistic sea states fall somewhere in between. Rather than relate j.t to the fre-
quency and wave-height, we have chosen to evaluate the TS at fixed values of p. in order
to generalize the analysis. Using the method of images one obtains,



= P[+ P (k Pi[eowu ÷8, +Uhin) + Ox cog0-kdsin 0,(1 la)

p,= + p"--.P,[= !e i'kXCM 8, +lie'(a'su1-kcO)], (lib)

where e is the surface grazing angle, and pi and p, are the magnitudcs of the incident
and scaftered fields in the free-field. The single-primes indi ate th¶ fields neglecting the
surface, the double-primes denote the image fields, and 1p I=I f is the response of
the cloud to the incident plane wave, where TS - 10 log is the target strength com-
puted in A '.-- field. After some algebra, we fin:that the TS for a bubble cloud near the
sea surface is given by

TS= 201o =TS1 + 10log{l+/.p2 +2yu - 4ysin 2(kdsin 0,)}2 (12)

Clearly, when g. = 0 the expression for TS yields the free-field target strength; for g- =
-1, and the sour". close to the surface, phase cancellation occurs, and the source behaveslike a dipole.

If one considers the limitir g from of Eq. (12), for kd<<1, one observes a dipole character-
istic to the scattered field in which the scattered pressure scales with (d/X)4 sin4 0, where X
is the acoustic wavelength. This equation suggests a complex acoustical behavior which
can be briefly summarized as follows. High void-fraction clouds which generate signifi-
cant TS's in the free field may not be acoustically important because these clouds tend to
reside near the surface, and thus are subject to the mitigating effect of surface dipole can-
cellation. This effect is exacerbated by the fact that these large TS clouds tend to res-
onate at low frequencies (i.e. long wavelengths), and the proximity of the cloud to the
surface is defined relative tc the acoustic wa-'elength.

If one considers deeper sc .tterers, then one is necessarily limited (by oceanographic con-
straints) to the consideration of lower void-fraction clouds that will not have as pro-
nounced a resonance scattering characteristic. ,ndeed, clouds in the deepest portion of
the bubble layer, (order 10 m) are very tenuous and probably do not resonate at all. It
seems likely that there are optimum combinations of cloud depth, cloud chara.:zeristics
and frequency that produces significant backscattfr target strengths (larger than, say -10
db). In the next section, uKt1g the equations determined above, we have explored a va-
riety of conditions that could give rise to significant scattering TS's.

.4. Results

We have generated a seri-:s of multidimensional figures to display the calculated target
strengths of these bubble assemblages as a function of several relevant parameters. These
figures are quite complex and require studious attention in order to fully grasp the princi-
pal implications of the data. The parameters shown ifi these figures with brief comments
where appropriate are as follows: TS--the target strength, defined as in Eq. 12 above; V1-
the void fraction, defined above; d--the depth of the center of the bubble cloud below the
ocean surface; 0 -the grazing angle of the incident sound beam; ac--bul'ble cloud radius;
p--a measure of &e reflectivity of the surface: fo. A± = -1, the surface is perfectly reflect-
ing, for g. = 0, the surface is at infinity and there is no reflection from the surface.

II



Consider Fig. 3, which is a four-dimensional plot of the target strength as a function of
void fraction, cloud depth, and cloud resonance frequency. For this case, the grazing an-
gle is shallow-- 100 --and the cloud radius is relatively large--0.5 m. We anticipate that
this case would correspond to the insonation of a "bubble plume", formed from the con-
vection of entrained gas bubbles to a considerable depth; however, this plume will be
treated as a resonant, compact scatterer. We presume that the large bubbles have risen by
gravitational forces to the surface, and that consequently the remaining bubbles, and par-
ticularly the void fraction, are both relatively small. The data shown in the lower right-
hand-comer of Fig. 3 correspond to g = -1, which presumes a perfectly reflecting surface.
Note that there is little scattering for small depths; in this case the cloud acts as a dipole
scatterer,.and thus for small grazing angles, the TS is very low. However, as the depth
increases to a few meters, even for void fractions as low as 10-5, relatively large TS's are
observed. For example, at a depth of 5 m, and for a void fraction of 10 4, the observed
target strength is on the order of 0 db for an insonation frequency of 300 Hz.

With a value of g = -1, it is assumed that the surface is perfectly reflecting, a situation
unlikely to be realized in a rough sea. The data shown in the upper left hand comer of
this figure corresponds to value of gt = 0, or for a surface so rough that no coherent energy
is reflected. Note that in this case, there is little depth dependence--no phase cancellation
from the reflecting surface--and this cloud is a high TS scatterer for all "depths". Perhaps
a more reasonable representation of the surface effect is presented in the lower left-hand-
comer, calculated for a value of g = -0.5, which thus corresponds to the intermediate
case. It is seen from this figure, that TS's on the order of 0 db should be observed for
plumes with void fractions above 10-4, at depths between 2-6 m, and at insonation fre-
quencies on the order of 300 Hz. As the void fraction falls below 10-5, the backscattered
intensity rapidly falls in magnitude.

Let us now compare and contrast these results for a relatively large, low void-fraction
plume with the case shown in the next figure. Shown in Fig. 4 are plots for a bubble
cloud of radius 0.1 m, and a grazing angle of 100 (as in Fig. 3). Consider again first the
case for a perfect reflecting surface, as shown the lower right-hand-comer. This cloud is
relatively small; thus, the monopole resonance frequency is rather high (of order 400 Hz
near the surface). Consequently, it can produce a large backscattered TS even when it is
within a few meters of the surface. Since we can presume that for such a small cloud, it
is not unreasonable to expect a large void fraction, we shall consider values of 03 as high
as 10-3. Note that for the surface conditions of g = -1, TS's of 0 db can be expected only
for clouds 3-4 meters below the surface.

Consider next, however, the conditions demonstrated in the upper left-hand-corner, in
which the surface condition corresponds to a very rough surface--a more likely occur-
rence for large void fraction clouds. For this case, TS's of 0 db can be observed at any
depth for a range of frequencies near 400 Hz. Again, if the more realistic case of g = -0.5

.is considered (lower left), a TS of 0 db can be expected to occur for a cloud with a void
fraction of 10-J, a radius of 0.1 m, a frequency of 400 Hz, and at a depth of about 4 m.

Finally, let us consider Fig. 5, which summarizes the principal features of this report.
Our field measurements at Lake Seneca [Roy, et al., 1992; Carey and Roy, 1993] demon-
strated that TS's of approximately 0 db could be achiEved for resonance oscillations of a
bubble cloud, far removed from the surface, with a void fraction of about 10-3, a radius of
about 0.25 m and at an insonation frequency of about 300 Hz. Furthermore, Prosperetti
and his students [Prosperetti, et al., 1993; Sarkar and Prosperetti, 1993] have demonstrated
that bubble clouds of similar size and void fraction, when located very near the surface,
could account for the Chapman-Harris, Ogden-Erskine surface acoustic backscatter when
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treated as resonant scatterers. We show now in Fig. 5 the expected individual resonance
scattering characteristics of these clouds as a function of such parameters as grazing
angle, depth below the surface, and surface conditions.

Shown in the lower right-hand comer of Fig. 5 is the predicted backscattered target
strength for a bubble cloud at its monopole resonance (varying between 350-500 Hz), for
a radius of 0.1 m, a void fraction of 0.5 %, and at a perfectly reflecting surface. Also

shown in this figure are the cases for a free field (upper left) and for the intermediate case
of a partially reflecting surface (lower left). Consider the plot in the lower left. This case
represents our estimate of the conditions expected to give rise to false echoes in low-fre-
quency, near-surface scattering. Note that one should expect echoes with TS's of 0 db for
a wide range of grazing angles and cloud depths. Bright echoes (of order 0 db) can be
expected to occur for grazing angles from 10-700, and for cloud depths from near the sur-
face to 10 meters. This figure indicates that the ocean surface is very rich with possibili-

I ties for bright echoes from resonant bubble clouds.

The conditions that lead to the production of bubble clouds (high winds and high sea
states) also favor the generation of high scattering TS's. First of all, high sea state means
that the ocean surface will be rough; thus, g.t=-0.5 is not an unrealistic approximation; sur-
face cancellation won't be as important except for very low frequencies. Secondly,
stormy conditions usually imply an unstable water column, which is often upward refract-
ing. Thus, the incident angles become steeper and the sin4 0 dependence is no longer as
important. These two effects tend to make far-field-like behavior much more pronounced.

Finally, we make note of the experiments of Lamarre and Melville [ 1992] who obtained
measurements of the void fractions of ocean-generated bubble clouds in the open ocean
off the coast of Delaware during the last week of February, 1991. Their data indicate that

significant numbers of clouds are produced with void fractions on the order of 0.5 %;
they remark that their data are consistent with their laboratory results and are several or-
ders of magnitude higher than the often-reported time-averaged values [Farmer and
Vagle, 1988].

I Further experiments are required, however, to determine the precise acoustic and envi-

ronmental conditions that give rise to these false echoes.

5.0 Summary

False targets can occur for low frequency sound scattering from the sea surface. It is un-
likely that Bragg scattering from a rough surface is the source of these echoes; rather,
bubble clouds or plumes resulting from breaking waves represent a more plausible expla-
nation. We have shown that bubble clouds or plumes can act as resonant scatterers at low
frequencies and generate target strengths as large as 0 db for a wide variety of conditionsI that are expected to occur in rough seas with wind-driven breaking waves. Future exper-
iments are planned to determine more precisely the measured targets strengths in terms of
the environmental conditions that would generate bubbles clouds of the required size,
shape and void fraction to produce these false targets.
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Acoustically Active Surfaces

Acoustically Active Surfaces and Active Noise and Vibration Control

Principal Investigator: F. Douglas Shields

Research Accomplished in 1992:

This research began in 1988 with an effort to develop smart acoustically active coatings using

piezorubber and/or PVDF. Such smart surface coatings are constructed by combining a sensing

layer with one or more actuating layers. The digital signal processing capability has been

developed that enables the signal from a sensing transducing layer to be passed through a digital

signal processor and applied to one or two actuating layers. With one actuator, it has been

possible to control either transmission or reflection of plane waves. With two actuating layers it is

possible to simultaneously control both reflection and transmission.

The work with smart coatings has expanded to include three aspects. First concerns the

development of actuators and sensors, especially those for use at low frequencies; the second

concerns the study of different control algorithms; and the third involves the study of the coupling

between the active surface and the medium. This coiupling can be complicated when the velocity

of the surface becomes position dependent. The work is these three areas is discussed below.

The digital signal processors needed for the "smart" surface control are the same as those

needed for active noise reducing headsets. About three years ago a research project was

undertaken with the Navy Experimental Diving Unit in Panama City, Florida to develop such a

head set for divers to use to reduce noise in a diving helmet.

A prototype headset with its digital control was delivered to the NEDU in February. Work

was begun in February on an SBIR with the Army to develop an ANR stethoscope for use in

helicopters and other noisy vehicles. This is also now in the prototype stage.



II. Summary of Work

Progress in the three areas of research with smart coatings funded by ONR is discussed in

this section.

Sensor Development

Because of their limited thickness, active coatings are intrinsically insensitive at low

frequencies. In 1991 NCPA developed panels consisting of transflexural capsules potted in a

matrix of polyurethane. During the interval covered by this report, these panels were used to

eliminate reflections from a pressure release surface in a water filled pulse echo tube 10 inches in

diameter and 20 feet long at frequencies as low as 100 Hz. In order to predict the performance of

such panels, the three port impedance matrix of these panels was measured experimentally using

a Laser Doppler Velocimeter. Work was begun on a contract with The Sandia National

Laboratory to collaborate in the development of transflexural capsules that could be used at great

depths in the ocean. As part of that contract, the performance of a number of different capsules

was measured as a function of pressure. An analytic expression was developed to calculate their

performance and preliminary work was done on a finite element analysis of the unit.

Algorithm Development

The control of smart coatings at pressure release surfaces is especially susceptible to

instability due to degenerative feedback from'a pressure sensor. With a velocity sensor the

feedback is nondegenerative. The pressure and velocity sensor reverse rolls at a rigid surface.

This is one reason proposed for using a velocity sensor with a soft surface. However, a velocity

sensor that does not alter the surface and has the needed sensitivity is very difficult to configure.

During the period covered by this report, an analysis of the instability problems associated with

various control algorithms was made and the results displayed on three dimensional plots of the

reflection and transmission coefficients as a function of complex gain. A paper was prepared

discussing these calculations and the results of some experimental work with multilayered



surfaces. This paper was ruled by ONR to contain sensitive material and it was, therefore, not

published.

In the area of active noise control, innovative work was done in developing both

frequency domain and time domain adaptive filters. Some of this work was described in a paper

that was submitted for publication to the Journal of the Acoustical Society of America, but is still

in the review process.

Coupling Between Active Surfaces and the Medium

To control reflections of plane waves that strike a plane surface obliquely requires a

phased array of active surface elements. Tim Ruppel built such a surface as a part of his

dissertation project. He made a plane surface with active strips and was able to drive these strips

with a gignal whose phase increased at a controlled rate. Using this surface he controlled

reflections of plane waves from the surface and radiated plane waves at specified angles. This

work was published and is referenced below. Additional work has been initiated to construct a

square wave guide with inner walls that can be driven with a controllable phase shift so as to

propagate waves with a controllable frequency and wave nutni-,A on ,,.,n, ,,, ".

A study has also been initiated by Dr. Lafleur of the propagation of different modes in a

fluid filled tube with elastic walls.

Publications and Presentations

1. Daniel M. Warren, L. Dwynn Lafleur, and F. Douglas Shields, "Experimental

determination of the three-part impedance matrix for an array of transflexural elements,"

J. Acoust. Soc. Am. 91, 2325 (1992). Abstract.

2. Daniel M. Warren, Dwynn Lafleur, and F. Douglas Shields, Theoretical model for the

unimorph flexural disc transducer," J. Acoust. Soc. Am. 92, 2292 (1992). Abstract.

3. Timothy H. Ruppel, Lisa Lucks Mendel, and F. Douglas Shields, "Digital feedback

suppression in open-ear hearing aids," J. Acoust. Soc. Am. 92, 2234 (1992). Abstract.



4. Timothy H. Ruppel and F. Douglas Shields, "Cancellation of air-borne plane waves

obliquely incident upon a planar phased array of active surface elements," J. Acoust. Soc.

Am. 93, 1970 (1993).

5. T.R. Harley, J.E. Hendrix, and K.T. Olree, "An adaptive feedback control for active noise

cancellation in a headset," submitted to J. Acoust. Soc. Am., March 1993.
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Propagation Physics

Principal Investigator: Kenneth E. Gilbert

Research Accomplished in 1992:

Dr. Gilbert was not at the National Center of Physical Acoustics after January 1, 1992.

However, the research described in the proposal was conducted during the first six months of the

year. The continuous-wave part of the research was concluded and the results written up for

publication in the Journal o. the Acoustical Society of America. A preprint of the article is

attached and serves as the final report of this research effort.
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ABSTRACT

A stochastic scattering model is derived in which the backscatter from the near-

surface oceanic bubble layer is written directly in terms of an integral over the wavenumber

spectrum ("power" spectrum) of the sound speed fluctuations in the layer. A factored form

is given for the integral that allows the backscatter cross section per unit area to be

expressed as the product of a "geometric factor" and an effective horizontal wavenumber

spectrum. Because a power spectrum formulation is statistical, there are no assumptions

about the geometry of the bubble layer. (E.g., hemispherical or cylindrical plumes are not

assumed.) By dividing measured data for backscatter-vs-frequency by the geometric

factor, we inverted scattering data from 12 different deep-ocean reverberation

measurements and directly inferred the wavenumber spectrum of the sound speed in the

bubble layer. For all 12 measurements, the inferred wavenumber spectrum is an inverse

power law of the form P(K)=AK-P where A is a strength parameter, K is the horizontal

wavenumber for a Fourier component of the sound-speed distribution, and the mean value

of the spectral roll-off exponent P is 3.86 ± .45. The consistency in the inferred

wavenumber spectrum strongly suggests that on scales of less than half an acoustic

wavelength (5 to 10 m), the sound-speed structure in the bubble layer is governed by

turbulence in the inertial subrange (Kolmogorov subrange) which has a universal value of

P = 11/3 = 3.67 for fully developed isotropic turbulence. Using Von Karman's

interpolation formula for Kolmogorov turbulence, together with oceanographically

constrained input parameters, we computed theoretical backscatter cross sections and

compared them with the empirical fit of Ogden and Erskine to Critical Sea Test data. It is

shown that with no adjustable parameters, the stochastic scattering model gives a good

account of the observed backscatter, as a function of both frequency and grazing angle.
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INTRODUCTION

In the scattering of sound from the sea surface, a significant discrepancy exists

between the observed measurements of backscatter and the values predicted by the classic

theory of Bragg scattering from rough sea surfaces. At high sea states and low grazing

angles, observed backscattering strengths are 10 to 100 times stronger than the strengths

predicted by Bragg scattering theory applied to sea surfaces having realistic scales of

roughness (McDaniel,1988, 1993; Ogden and Erskine, 1992). It is doubtful that the

discrepancy can be removed by improvements to rough surface scattering theory or by

adjustments to the known sea surface roughness spectra. Consequently it has been

hypothesized that the observed high reverberation levels are due not to rough surface

scattering but to scattering from the near-surface oceanic bubble layer which is created

when air is entrained by breaking waves (Urick and Hoover,1956; McDaniel, 1988, 1993).

Since large bubbles rapidly rise to the surface, the bubble layer itself is composed

primarily of clouds of very small bubbles ("microbubbles") that are distributed and mixed

by downwelling currents and turbulence (Thorpe, 1982, 1984; Thorpe and Hall, 1983;

Osborn, et al.,1992). The microbubbles are transported essentially passively until they

finally go into solution, usually after many minutes (Thorpe, 1982; Thorpe and Hall,

1983). Although the microbubble layer has a low density of bubbles (air volume fractions

of 10-5 or smaller), it nevertheless has a marked effect acoustically (Fanner and Vagle,

1989; Su,1992; CartmiU and Su, 1992; Su et al., 1993).

At low frequencies where the scattering is nonresonant (f Z 5 kHz), the sound

speed in the bubble layer can be considered to be the that of a water-bubble mixture. Small

concentrations of bubbles significantly increase the compressibility of a water parcel

without measurably changing its density. Since sound speed is inversely proportional to the

square root of density times compressibilty, the sound speed in the bubble layer is

decreased. For example, for a volume fraction of 105, the speed of sound is reduced by

about 170 m/s.
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On records from upward-looking sonars, the distribution of bubbles in the layer

appears to be random in space and time. (Thorpe,1982; Farmer and Vagle, 1989; Farmer,

1992; Commander, 1992). Thus the acoustic "picture" of the near-surface bubble layer is a

region with a stochastic distribution of sound speed that is determined by upper ocean

dynamic processes.

In this article we propose that the clouds of microbubbles discussed above are an

important, and perhaps the primary, physical mechanism that controls the backscatter at

low grazing angles and high sea states. Such a proposal has been made already by other

workers (McDonald, 1991; Henyey 1991). In fact, the work described here was directly

motivated by the original research of McDonald. Unlike previous workers, however, we

I do not assume the bubble layer to be a collection of plumes with a specified geometry such

as cylinders or hemispheres. Rather, we more realistically consider the bubble layer to be a

I stochastic medium with certain statistical properties. With this picture of the bubble layer,

the backscatter is viewed as Bragg scattering from the Fourier components of the sound-

speed fluctuations created by the stochastic microbubble distribution. As is discussed

below, this approach makes it possible to relate the backscatter directly to the wavenumber

spectrum of the sound-speed fluctuations in the bubble layer, thereby connecting the

I backscatter to a realistic oceanographic process -- turbulence.

I
I

I
I



I. THEORETICAL FORMULATION

We want to calculate the backscatter from the near-surface microbubble layer under

the assumption that the bubble distribution varies stochastically in space and time. To

arrive at such a formulation we represent the bubble layer as an effective fluid continuum

with a fluctuating sound speed that on the average is less than the sound speed in bubble-

free water. We first outline the basic assumptions of the bubble-layer model. Then an

expression is derived for the backscatter one obtains from the bubble layer model. Finally,

we approximate the backscatter cross-section per unit area as the product of a "geometric

factor" times the effective horizontal wavenumber spectrum for sound speed fluctuations in

the bubble layer.

A. A Stochastic Bubble-Layer Model

When a wave breaks in the ocean, a wide spectrum of bubble sizes is generated.

The larger bubbles rise to the surface rapidly, leaving behind a turbulent, smoke-like

cloud of microbubbles with radii of 10-100 microns (Su and Cartmill, 1992; Su et al.,

1993). Since the microbubbles may stay in the water for some time before dissolving, they

can be transported downward by turbulent downwelling currents (Thorpe, 1982, 1984;

Thorpe and Hall, 1983; Osborn, et al., 1992). Because of turbulence, the microbubble

layer is a stochastic, inhomogeneous, time-dependent layer and, in high sea states, can

extend as far as 20 m below the sea surface (Farmer, 1992).

As discussed in the Introduction, the effect of the microbubble layer on low-

frequency sound is to "soften" the water so that the sound speed is lowered and the

wavenumber is increased. Thus, in a continuum model, the square of the total

wavenumber, kiq, that appears in the wave equation can be written as the contribution

from bubble-free water plus the contribution from the bubble distribution:

k,.2w=kI (1)
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whe-re (a o21'o; A-*L thei %avcAu.nbc" fE: bubbl -free seawater, and. is .ie change due to

bubbles. In terms of the bubble number density, n, the contribution of the microbubbles to

the total wavenumber is

k2 = 4n< t > n (2)

where < t > is the average bubble scattering strength (Foldy, 1945; Carstensen and Foldy,

1947; Morse and Feshbach, 1953). At the frequencies we consider the micobubbles are

nonresonant, and Eq.(2) reduces to the wavenumber one obtains using the sound-speed

from simple mixture theory. Hence, for a small sound-speed change Ac due to bubbles,

ki can be written as

k=- 2kj (Ac/c 0) (3)

Swhere simple mixture theory gives Ac/co = - 11,5004 , for a void fraction + much less

I than one, (Urick,1975). In this article we keep in mind that kj is due to a distribution of

discrete bubbles but always use a continuum model to represent the bubble layer and to

calculate backscatter.

Because the microbubbles are distribuated by turbulent diffusion, at any given time

the bubble distribution is quite inhomogeneous. Although experimental measurements

indicate that the average concentration of bubbles decays approximately exponentially with

depth , it is clear from the uplooking sonar records (Thorpe, 1982; Farmer and Vagle,

1989; Farmer, 1992) and in-situ measurements (Su, 1992; Cartmill and Su, 1992, Su et

al., 1993) that there are significant fluctuations about the average, both horizontally and

Svertically. Hence we write ki as the sum of an average value and a fluctuating part that

I depends stochastically on both depth and horizontal distance.

ki = <kj(z)> + $kh(E) (4)I ,
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where <kj(z)> = - 2 kI [<Ac(z)>/co)] is the average profile and Skj(E) is the fluctuation

about dr(z)>. Because cf ",'"b!e disso!ttion, both <k,(z)> and 8kt2,.) are týd

decrease with increasing depth (Su,1992; Cartmill and Su, 1992; Su et al., 1993).

For sound-speed fluctuations that are small relative to co we can write Sk(r) as

Wk(,r) =- 2kj [$Sc()/co] (5)

where S(cr) is the fluctuation about the average sound speed. To account for the decrease in

the bubble concentration with depth and the corresponding decrease in the size of

fluctuations, we write the sound-speed fluctuation as the product of a monotonically

decaying reference function fr.f(z) and a fluctuation parameter c(E): Sc(r) = frf(z)E(r). The

reference function is chosen so that the standard deviation in sound speed fits measured

values. We therefore let frf(z) = ac(z), where ac(z) is the measured rms sound-speed

fluctuation with depth. The fluctuation parameter t(r) is taken to represent an isotropic

stationary stochastic process where the autocorrelation function <E(r)c(,)> = C(r---f) is

normalized so that C(O) = 1. Conceptually, c(.) accounts for the statistics of the fluid

motion that transports the bubbles. As discussed later, the fluid motion statistics are

directly related to the distribution statistics for "conservative passive additives" (Tartarski,

1961) that move with the fluid as infinite-lifetime tracer particles. The scaling function ac(z)

accounts for both the surface bubble concentration and the decay with depth due to the

finite lifetimes of the microbubbles. Also any buoyancy effects are included implicitly in

an empirically determined scaling function.

With the above formulation, we have

Skj(E) = 2kj [(z)/c.D]c(E) (6)
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In the calculations presented later we will fit the measured values of oc(z) with an

expen,.=faa so Lt GEc(L
4 z "(v)•(-z-L- where Oc(O) is the rms sound sptce

fluctuation at the surface and L is the e-folding distance. Thus, with the above exponential

scaling of the fluctuations, we have fimally

kji= Ik + <kI(z)> - 2k3 [ oy(O)/co ] e-z/L C•:) (7)

The above expression for the total wavenumber is used in a wave equation to describe

backscattering from the oceanic bubble layer.

B. Solution for the Backscattered Field

The wave equation to be solved for the acoustic pressure is given by

V2'T + k,ý,aT=O (8

where the total field T is the sum of the field in the absence of a bubble layer, 'T'o and the

field, T. , scattered by the layer, i.e., T = -To + 'T.

The integral equation associated with the differential wave equation is the

Lippmann-Schwinger equation (Rodberg and Thaler, 1967).

IF (r) = TFOM) + &JGo(!,r') k2B(r') T)d 3r' (9)

where the Green's function 0o is the point source solution in the absence of a bubble layer

and ki(ie) denotes <ki(z')> + 8kl(r'). The average profile <kl(z')> does not contribute to

backscatter. Consequently, the backscattered field ,'F is given by

1(r)= Oo(,)k2(e()T(r')d3, (10)
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-or isospeed bubble-free water and a pressure-release boundary condition at a smooth sea

surface we have for G0O:

__k eik0 R0Oo r,e) - +P

The quantities R+ and R-, are defined as

R - r -rAi (12)

where with unit Cartesian vectors (1,1, t) we have r± = rh ± z C, and rh x '1+ y 1.

Note that the vector rh is the horizontal component of the radius vector.

We are interested in the far field so we approximate Go as

0o(r,rl) = - 2i sin (k'v z')e-ikh" r1h (13)
-- r

where k'v = kvinO and kh = k0cosO !h are, respectively, the vertical wavenumber

and vector horizontal wavenumber of the backscattered field.

For weak scattering from the bubble layer, the backscattered field makes only a

small contribution to the total field. Hence in the integral in Eq.(10) we can use the first-

order Born approximation, which approximates the total field in the bubble layer as the

unscattered field, i.e., T?= To. Taking T'O to be a plane wave perfectly reflected from the

surface we have

IF 0 =ei% .4 r+-eik 0 .

S2i in (kv z) ikh. rh (14)
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where k, = -koxinO and k1, = kIcosO th are, respectively, the vertical wavenumber and

vector horizontal wavenumber of the unscattered field. With the results from Eqs. (13) and

I (14), the Born approximation for the backscattered field ¶.(r) is given by

[i(o= ir rf(k'v z')sin(kv z') Ak2B(t) eiqh" rh d3r (15)

where k,= - ky, and qh=kh- k'h= 2kh.

i The ensemble averaged backscattering cross-section is given by,

a =< I fa 12> (16)

where the scattering amplitude f,<:at is the coefficient of the spherical wave exp(ike, r )/r in

fsact = - -fsin2(kvz') Skj3(r) eih" rh d3r' (17)

Hence for backscattering we have,

g 4kfo(O) f i (eh - eh)g(kv,z )g*(kv,z)C(r"-r) d3 r" (18)
"0=[=¢ ih("h - -•) " ' A-~r

I where g(kv,z) sin2(kvz)e-z/L and, as discussed earlier, C(r'--e) = <E(')C(!)> is the

autocorrelation function for the stochastic quantity e(r) which represents the effects of

turbulence and controls the variability in ki. We now define t'- r as S = (Sh, Sv) and

rewrite Eq. (18) as

IaC4k 2 I OJqh" (f h - rh~g(kv1z'+ Sv)g*(kv,z')C(Sh,Sv)d 3 S d2 rh'dz' (19)

The integral over z' can be written as
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f g(k,,z'+ Sv)g*(kv,z')dz' f J (kv,q)j 2 eiqySvdqy (20)

where l(k,,q,) is the Fourier transform of g(k., z). Thus o becomes

I 4KO,2 (0) r
2n I- n[c2 f L(k,,q.)1 2 4(q) dqv d2r1 ' (21)

where the normalized wavenumber spectrum it(q) is the Fourier transform of the

normalized autocorrelation function , C(S):

St(q)- J C(S) eiS d3 S (22)

and q = (qh, qv). The full wavenumber spectrum for sound-speed fluctuations in the

bubble layer is proportional to the normalized spectrum.

Experimentally, the quantity measured is the the cross section per unit area, A,

where A9 is related to a by

f J d2,' (23)

From Eqs. (23) and (21) we can see that h is given by

,9c =J __ 1 () (kv,q,,)12 jt(q) dq,, (24)

We want to use Eq.(24) and surface backscatter measurements to estimate the horizontal

wavenumber spectrum (i.e., power spectrum) of sound-speed fluctuations in the bubble

layer. Consequently, we would like to have an expression for 6 that is factored into the

product of a "geometric factor" times the power spectrum. To obtain a factored form we

must make some approximations to the integral in Eq.(24).

C. Factored Form for the Scattering Cross Section
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As indicated in Eq.(24), computing - requires a weighted integration over C(q)
with I(kv,qv)12 as the weighting function. We assume that the fluctuations are separately

isotropic horizontally and isotropic vertically so that we can write (4(q) as a function of

and q2: C(q) =- i(q2, q2). If, over the range of integration, 4ý(q) is a smooth function

of q, (such as a power law), then in Eq.(24) we can expand C(q) in a Taylor series in q.

We expand 4ý(q2, q2) about some as yet unspecified average value <qo>:

2(:(q•, <q2>) + (q - <q>) + 1 a2 )2 + 25)

h, qv h( (q - 1q )2 vq - <qV>)2 +(5

The second term vanishes if we define <q2> to be the average value of q. over the

integration interval: <q=> a 11/12, where

-00

00 00

I2= f f(kv,qv)12dqv = 2n f Ig(kv,z)12dz (27)

Evaluating the integrals It and 12 and simplifying yields,

1

<q = 3L2 + 4 k L2 ) (28)

Keeping the first two terms in the Taylor series expansion and evaluating the integral over

qv, gives us an approximation for h that is in factored form:

•9 1 4k~2 Q()
-I- -1- 412c.2 ][ f IS(kv,qv)12 dqv ] 4`(q2, <q2>) (29)



13

3L ko(0) 4kIL4 q2<2>
4n- - C3 (1+ 4ktL2 )(1 + ktL2 ) h v

where the result in Eq.(27) has been used to evaluate the integral over qv. Note that the

approximation in Eq.(29) is equivalent to approximating the average value of a function

f(x) as <f> = f (<x>). We have tested the approximation in Eq.(29) by comparing with an

exact numerical evaluation of the integral. For small grazing angles and a power-law

spectrum of the form ýq2,q22) = A [(Bq2 + Cq2)1/2, where A, B, and C are constants,

the approximation agrees very well with an exact numerical evaluation of the integral.

We now define the effective horizontal wavenumber spectrum for sound-speed

fluctuations in the bubble layer as

P(qh) = oc2(0)Cý(q2, <q2>) (30)

where 02(o) is the mis sound-speed fluctuation at z=O. We further define a "geometric

factor" F

F= 3L kg 4kjL4

4n2 cj (1+ 4kýL 2 )(I + kIL2 ) (31)

With the P and F defined as given above, we have

= F P(qh) (32)

Very little is presently known about the wavenumber spectrum for sound-speed

fluctuations in the oceanic bubble layer. In the next section we use Eq.(32) to "invert"

measured backscatter data and obtain empirica' results for P(qh).
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U. THE WAVENUMBEP SPECTRUM FOR SOUND-SPEED FLUCITUATIONS IN

THE BUBBLE LAYER

The stochastic model discussed above has been used to invert surface backscatter

data frtm 12 different deep-ocean measurements. As will be shown, all the measurements

yield an inverse power-law wavenumber spectrum that is consistent with turbulent

diffusion of microbubbles by inertial subrange turbulence (Kolmogorov turbulence).

Hence in this section we propose that ti.', wavenumber spectrum for sound-speed

fluctuations in the bubble layer can be described by the Kolmogorov spectrum, which is

proportional to K11/3 , where K is the wavenumber for a Fourier component of the sound-

speed distribution. In the next section (Section In) we use the spectrum to make predictions

for scattering from the bubble layer.

A. Analysis of Reverberation Data

Figure 1 shows some typical results obtained from deep-ocean reverberation

expeiiments for scattering versus frequency at a fixed grazing angle. (Chapman and Harris,

1962; Chapman and Scott 1964; Percy, 1970; Brown et al., 1966). To use the data to

estimate the horizontal wavenumber spectrum P(qh) as a function of qh, we convert the

measured backscatter strength, BS (in decibels), to a scattering ci iss section per unit area,

•, and divide by the geometric factor F as indicated in Eq.(33) below-

P(qh) = &naa /F (33)

where the measured cross section hma is related to the backscatter strength BS by BS =

flOogiO(•ma).

By plotting log,, P(qh) versus log1 0 (qh) from the measured data, we observed that,

for all cases examined, the wavenumber spectrum is well represented by a power law of the

form Aqh-P, where A is a strength parameter and P is a spectral roll-off exponent.
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Numerical values for the quantities A and P were obtained from a least-squares fit for each

data set. As examples, the estimated wavenumber spectra for four of the data sets in Fig. I

are shown in Fig. 2. The horizontal axis in Fig.2 is the logarithm (base 10) of qh, and th"

vertical axis is the logarithm (base 10) of the estimated wavenumber spectrum, P. In

determining the optimum least-squares fit, the e-folding depth was varied about L =1.5 to

further improve the fit. Since there was little improvement, in all four cases in Fig. 2 we

have used an e-folding depth of L=1.5 mn, a value that is consistent with oceanographic

measurements (Thorpe, 1982; Farmer and Vagle ,1989; Su 1992; Cartmill and Su, 1992;

Su et al., 1993).

The procedure described above for inferring P(qh) was used to analyze

reverberation data for surface backscatter for a total of 12 different measurements, for

windspeeds ranging from approximately 15 kts to over 30 kts. In Fig. 3 we show the

inferred values for the spectral exponent p as a function of windspeed for the 12

measurements (Chapman and Harris, 1962; Chapman and Scott 1964; Percy, 1970; Brown

et al., 1966; Jin et. al, 1989).

In a given experiment the strength parameter A (and hence the rms sound-speed

fluctuation oc(0)) generally increases dramatically and sytematically with windspeed.

However, in the examination of the 12 measurements, we found that, between different

experiments, the correlation of the strength parameter A with windspeed was poor. Hence

a plot of the strength parameter A versus windspeed for the 12 measurements gives little

insight and consequently is not presented.

Although the strength parameter A depends strongly on windspeed, the spectral

exponent 1 appears to have little windspeed dependence. The mean value of P from the

12 least-squares fits is A = 3.86, and the standard deviation is .45.

One can understand the origin of the apparent universal value P3= 3.86 from a

simple analysis of the geometric factor F and an inspection of plots of h versus

frequency at a fixed grazing angle (E.g., Fig. 1). At a grazing angle of 200, for example,
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and frequencies above a few kilohertz, the vertical wavelength is on the order of the e-

folding distance ("thickness") of the bubble layer. Consequently, the quantity ký L2 in the

geometric factor is much greater than 1, so that the frequency dependence in the geometric

factor comes solely from the k4. factor (See Eq.(3 1)). Thus at frequencies above a few

idlohertz, the geometric factor F varies as frequency to the fourth power. From inspection

of plots of 6 versus frequency at a fixed grazing angle, we can see that 49 varies

weakly with frequency for frequencies above a few kilohertz. For ,h to depend weakly on

frequency, the exponent in the wavenumber spectrum P(qh) must almost cancel the fourth

power frequency dependence in the geometric factor. Therefore we can directly infer from

the weak frequency dependence of h that P is slightly less than 4. Since 4 apparently

always has weak dependence on frequency above a few kilohertz, the data directly imply a

nearly universal value for P that is slightly less than 4.

The consistency of the value of P for the 12 measurements suggested to us that, at

the scales probed by the backscattered waves (1/2 the acoustic wavelength), the distribution

of microbubbles is governed by a model-independent mechanism such as small-scale

turbulence. In the discussion below we present evidence for the turbulence hypothesis.

B. Kolmogorov Turbulence and the Distribution of Microbubbles

Langmuire (1938), in his original studies of the near-surface circulation that now

bears his name, noted that "...although the motion was very slow it was very turbulent."

In recent years, Thorpe (1982) has made comprehensive observations of the turbulent

nature of Langmuire circulation and emphasized its role in the turbulent diffusion of

microbubbles (Thorpe 1982, 1984). Very recently, Osborn et al. (1992) simultaneously

measured both the turbulence and acoustic scattering associated with bubble plumes and

concluded that turbulence is a dominant feature of the plumes. From a simplistic viewpoint,

the bubble-cloud records from upward-looking high-frequency sonars, which are often

remarkably similar to clouds in the atmosphere, visually suggest the turbulent nature of the
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currents that transport microbubbles (Thorpe, 1982; Farmer and Vagle, 1989; Farmer,

1992).

Because, at small scales, turbulence has some universal characteristics, we seek

here to establish a connection between the empirical value of p3 = 3.86 and small-scale

turbulence. We first present some basic background information in order to make our

reasoning easier to follow.

In turbulent fluids, steady-state small-scale turbulence is governed by an energy

cascade process that leads to model-independent structure at small length scales where the

fluid has "forgotten" the details of the driving mechanism that supplies the energy (Landau

and Lifshitz, 1959; Tatarski, 1961). These length scales are commonly known as the

"inertial subrange" (Hinze, 1959; Neumann and Pierson, 1966; Grant et al. 1962; Grant et

al., 1968; Embleton and Daigle, 1991 ). Kolmogorov has shown that the velocity structure

of such turbulence has a three-dimensional wavenumber spectrum proportional to K-11/3

= K-3-6 7 , regardless of the intensity of the turbulence (Tatarski, 1961) . Further,

Obukhov and others have studied the the concentration distribution of "passive additives"

such as heat (or, in our case, microbubbles) that are mixed by Kolmogorov turbulence

(Tatarski,1961; Corrsin, 1951). Obukhov was the first to show that, given sufficient time,

the concentration distribution acquires the same spectrum as the turbulence itself (Tatarski,

1961).

In the ocean mixed layer, Obukhov's prediction is strongly supported by

measurements of near-surface temperature fluctuations (Whitmarsh, et al., 1957; Voorhis

and Perkins, 1966; Grant, et al., 1968) which clearly show the characteristics of turbulent

mixing by inertial subrange turbulence. Whitmarsh, et al., for example, have shown that

the "structure function" for the temperature fluctuations < [T(r 2) - T(rl)] 2> closely

follows Kolmogorov's well - known "2/3 law" which states that for inertial subrange

turbulence the structure function varies as p2/3 , where p = jr- - rj I is the separation

between two measurement points. In wavenumber space the 2/3 law corresponds to a



three-dimensional wavenumber spectrum that varies as K- 11/3 (Tatarski, 1961). Thus four

pieces of information -- direct observations with high-frequency sonars,

Kolmogorov/Obukhov theory, temperature fluctuation measurements, and the acoustic

analysis presented here -- have led us to hypothesize that, except for the monotonic decay

with depth due to dissolution, the microbubble distribution, like the distributions for

turbulence and temperature, can be represented by the K- 11 /3 spectrum associated with

inertial subrange turbulence.

The inverse power law K 1 1/3 proposed by Kolmogorov is not valid at all scales

but only in the inertial subrange, 2n/L. -< K << 2n/10, v.here L0 is the scale of the

largest eddies ("outer scale") and 1. is the scale for the smallest eddies ("inner" scale) where

energy is dissipated by viscosity. The cormpdlete turbulence spectrum is often approximated

with an analytic expression due to Von Karman (Clifford, 1978). The normalized Von

Karman spectrum varies as K-1i/3 in the inertial subrange and by construction has a

three-dimensional integral of unity in wavenumber space. To make backscatter predictions

from first principles without a direct measurement of the strength parameter A. one must

use some expression such as the Von Karman spectrt 'hat can be normalized in

wavenumber space. Although often used in the atmospheric community, the Von Karman

spectrum is only one of a many possible choices for a convenient integrable expression

and has no deep physical significance.

For our purposes, it is convenient to generalize the spectral exponent in the Von

Karman spectrum and set the inner scale to zero. With a general spectral exponent P and

with 10 = 0, the normalized Von Karman spectrum is

(4(K) = N(P) (8n3/2 K,- 3)(1 + K2/Ko2)-P/2 (34)

where K. = 2n/L0 , and N(P) = r(P/2)/ r(P/2-3/2), is the ratio of two gamma

functions. In the inertial subrange we have K/K, >> 1. Hence we have
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(:(K) = N(P) (8g3/2 Ko- 3 )(K/Ko)-P, K/Ko >> 1 (35)

Langmuire observed that, in Lake George, the downwelling currents were

consistently confined to the mixed layer (Langmuire, 1938). Therefore, in the ocean, when

a mixed layer is present, we expect Lo to be on the order of the mixed layer depth, or

roughly 50 m to 100 m. This estimate is consistent with existing oceanographic

measurements of horizontal bubble layer structure (Commander, 1992; Henyey et al.,

1992). To get some idea of the size of Cl(K) for such outer scale values, we can consider

the special case P = 4, for which it(K) can be simply evaluated. For P• = 4 and Lo = 100

m, we have

•(K) = (16n 2 / Lo)K-

=1.6 K-4 (36)

Any value of P that is close to 4 gives a similar numerical coefficient for K-P.

The complete wavenumber spectrum for sound-speed fluctuations is ac2 (0) times

the normalized spectrum i(K). Hence, using the result in Eq.(36), we have for the

strength parameter A (the coefficient of K-P inferred from reverberation data) the value A

1.6&,2(O). From Fig. 2, it can be seen that for windspeeds in the range of 20 kts to 30

kts, the inferred values of logioA (i.e., the yiintercept) are in the range 3.5 to 5.2. We can

therefore infer ac(O) to be in the range of 44 m/s to 315 m/s, which corresponds to rms

void fraction fluctuations of order 10-6 to 10-5.

The results for oc(O) inferred from backscatter data are consistent with the in-situ

measurements of Su (1992) and Cartmill and Su (1992). Using acoustic measurements of

bubble sizes, they infer values for oc(0) for a 30 kt wind that are in the range 150 m/s to

200 m/s, or approximately ten percent of the speed of sound in bubble-free water.

Preliminary direct travel-time measurements of sound speed recently reported by Lamarre
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and Melville (1993) for moderate sea states (winds less than 20 kt) also suggest near-

surface sound speed fluctuations on the order of ten percent. Farmer and Vagle (1989), in

contrast, have estimated near-surface average sound speed reductions of about 1 per cent.

If we assume that the fluctuations in sound speed are on the same order of magnitude as the

average sound-speed reduction, then our inferred value for o.(O) and the measured values

of Su, Cartmill and Su, and Lamarre and Melville are all significantly larger than the value

inferred from the data of Farmer and Vagle. In the backscatter predictions in this article we

use data for On(z) provided by Su (1992) since they are the only in-situ measurements

presently available for high sea states.

It should be noted that although the Von Karman spectrum used here is isotropic at

all scales, isotropy is a plausible approximation only in the inertial subrange. Even in the

inertial subrange, measurements of temperature fluctuations show a clear departure from

isotropy (Whitmarsh, et al., 1957). Fortunately, it is easy to generalize the scattering

model to account for anisotropy in the normalized wavenumber spectrum ((K). For low

grazing angle backscatter, the primary anisotropy, the vertical/horizontal anisotropy, affects

only the normalization of the spectrum and not the spectral exponent I . To account for

vertical/horizontal anisotropy, we simply multiply the normalized wavenumber spectrum

for isotropic turbulence by a factor Lv/Lh , where Lv and Lh are, respectively, the outer

scales associated with vertical and horizontal 'turbulence structure. Without oceanographic

measurements of Lv and L- , however, any attempt to theoretically account for anisotropy

would be pure conjecture. Hence, in this article, we normalize the spectrum under the

assumption of isotropy (Lv = Lh= Lo) realizing that such an assumption is crude at best.

Ideally we would like to have a direct measurement of the spectrum, but, currently, no

measurements exist.
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C. RMS Sound-Speed Fluctuations Versus Depth

To complete the statistical description of the bubble layer, we need an estimate of

the rms sound-speed fluctuation as a function of depth. As discussed in Section I, we use

an exponential fitting function of the form Qc(z) = cc(O)e-Z/L , an approximation that is

consistent with observed bubble distributions (Thorpe, 1982 ; Farmer and Vagle, 1989;

Su, 1992; Su et al., 1993). For the backscatter predictions in a 30-kt wind presented in the

next section, the function c(z) was fitted to the rms sound-speed measurements of Su

(1992) from a measurement site in the Northeast Pacific in winter conditions. A least-

squares fit to the measured values of oc versus depth gives an rms sound-speed fluctuation

at the surface of ac(O) = 207 m/s and an e-folding distance of L=i .95. In the next section,

the fitted values for ac(O) and L, together with the above result for e:(K) are used in

Eqs.(30)-(32) to compute the backscatter cross section.
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III. COMPARISON OF BACKSCAT'ER PREDICTIONS WITH EXPERIMENT

In the previous section we proposed a wavenumber spectrum for use in a stochastic

scattering model. In this section we use the proposed spectrum and the stochastic scattering

model to make predictions for backscatter from the oceanic bubble layer. We compare the

predictions with the experimental results reported by Ogden and Erskine (1992) for the

Critical Sea Tests (CST). The purpose of the comparison is to show that with

oceanographically constrained parameters (no "adjustable" parameters) the stochastic model

can give a good account of the measured backscatter as function of both frequency and

angle.

We consider two sets of calculations. The first set uses the empirically determined

value of P-= 3.86 and the second uses the Kolmogorov value for the inertial subrange, P =
1 /3 = 3.67. In both calculations we use the normalized Von Karman spectrum with an

outer scale of Lo = 106 m, which was the average mixed layer depth for a 30 kt wind

during the CST-7 experiment (Farmer, 1992). As discussed in the previous section, the

rms sound-speed fluctuation profile was fitted to measured data of Su (1992) for a 30 kt

wind.

Figure 4 compares the predicted scattering strength-vs-grazing angle at several

frequencies with the Ogden-Erskine empiric i fits to CST data. Since at very low

frequencies, surface scattering can be the dominant scattering mechanism, we have for

completeness included two theoretical curves, one that includes both bubble layer scattering

and rough surface scattering(solid line), and one with only bubble layer scattering(dashed

line). The rough surface contribution is from Thorsos (1990) and is added incoherently to

the bubble-layer contribution. Figure 5 shows the backscatter as a function of the

frequency for several different fixed grazing angles. Since the solid and dashed lines in

Figs. 4 and 5 overlay except at very low frequencies, we can see that the main scattering

contribution is from the bubble layer.
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Figures 6 and 7 are the same as Figs 4 and 5 except the Kolmogorov value of

It=ii/3=3.67 was used instead of Pr=3.86. With P-=3.67 the agreement with the CST data

is not quite as good as with P=3.86, but nevertheless is satisfactory and shows that

Kolmogorov's theory for inertial subrange turbulence is consistent with the observed

backscatter.
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IV. SUMMARY AND CONCLUSIONS

A stochastic scattering model based on the wavenumber spectrum for sound-speed

fluctuations in the oceanic bubble layer has been derived. The model was used to analyze

data from 12 different measurements of surface backscatter. From the analysis it was found

that the effective horizontal wavenumber spectrum for sound-speed fluctuations in the

bubble layer is an inverse power law of the form P(K)=AK-P, where A is a strength

parameter, K is the horizontal wavenumber, and the mean value of the spectral roll-off

exponent is P = 3.86 ± .45 . The universal character of P suggests that the small-scale

structure of the microbubble distribution (scales < 5 - 10 m) is governed by turbulent

mixing due to turbulence in the inertial subrange. Moreover, using a spectrum based on the

notion of inertial subrange turbulence and observed oceanographic parameters, good

agreement was obtained with measurements from the Critical Sea Test surface backscatter

experiments.

Although the stochastic scattering model , with no adjustable parameters, gives

good agreement with surface backscatter data, there nevertheless is a need for further

oceanographic measurements to establish the physical validity of the model. Since the

backscatter depends on the square of the rms sound-speed fluctuation, the most important

experiment is a direct sound-speed measurement to confirm the measurements of Su (1992)

where oc(z) was inferred indirectly from acoustic estimates of the bubble size distribution.

The next most important measurement is to determine whether or not an inertial subrange

actually exists in the spectrum of the sound-speed fluctuations. Establishing that Pi is

exactly 11/3 is not as important as determining whether the bubble distribution is

systematically controlled by small-scale turbulence. In fact, since the value 11/3 applies to

fully developed isotropic turbulence, it would not be surprising if the effective value for B

in the bubble layer were not exactly 11/3. Finally, an important and hopefully possible task

would be to relate the observed wavenumber spectrum for sound-speed fluctuations in the



bubble layer to environmental parameters such as windspeed, air/sea temperatures, and sea

state. To accomplish such a task would require that the wavenumber spectrum and the

associated environmental parameters be measured under a variety of conditions so that

predictive models could be tested.

We have presented evidence that scattering from microbubbles in the near-surface

bubble layer is as strong as any other surface scattering mechanism, but we have not

shown that it is the sole mechanism. If, for example, scattering from dense, near-surface

bubble plumes under breaking waves were equally strong, the cross-section would be

raised by 3 dB, an amount that is within the experimental error in the measurements. Thus,

until more definitive measurements are made, the stochastic model presented here must be

viewed as one of a number of mechanisms that can contribute significantly to surface

backscatter.
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FIGURE CAPTIONS

Fig. 1. Backscatter strength versus frequency for a grazing angle of 200. Note the common

weak dependence on frequency at frequencies above a few kilohertz.

Fig. 2. Horizonal wavenumber spectra for sound-speed fluctuations in the bubble layer.

The spectra were inferred from the backscatter versus frequency curves in Fig. 1. The form

of the spectra is P(qh) = A qh"1 where A is a strength parameter and A is a spectral roll-off

exponent. The quantity qh is 2kh, where kh is the horizontal wavenumber.

Fig. 3. The spectral roll-off exponent P versus windspeed for 12 different backscatter

measurements. There appears to be little dependence on windspeed. The approximately

constant value of P = 3.86, is a result of the weak frequency dependence seen in Fig. i.

The nearly universal value of P suggests that the wavenumber spectrum of sound-speed

fluctuations in the bubble layer is governed by a model-independent mechanism such as

inertial subrange turbulence (Kolmogorov turbulence) for which p = 11/3 = 3.67 for fully

developed isotropic turbulence.

Fig. 4. Scattering strength versus grazing angle at several fixed frequencies using the

empirical value of P=3.86. The dashed line is backscatter just from the bubble layer. The

solid line is the incoherent sum of bubble layer scattering and rough surface scattering. The

diamonds are the Ogden-Erskine empirical fit to the Critical Sea Test data.

Fig. 5. Same as Fig. 4 except that the grazing angles are fixed and the frequency is varied.

Fig. 6. Same as Fig. 4 except the Kolmogorov value of P = 11/3 = 3.67 is used.

Fig. 7. Same as Fig. 4 except the grazing angles are fixed and the frequency is varied. Also

the Kolmogorov value of P = 11/3 = 3.67 is used.
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Transducer Development

Principal Investigator: M. A. Breazeale

Research Accomplished in 1992:

Most of the year was spent on transducer development and in completing the Ph.D.

Dissertation of Dehua Huang; however, some of the time was spent in completing research

supported in previous years under Navy Programs. These will be included in this Final Technical

Report.

Ph.D. Dissertation of Dehua Huang. The Ph.D. Dissertation "Gaussian finite element

method for description of underwater sound diffraction," was completed in August 1992. The

dissertation describes a new method for solving diffraction problems. The method is based on the

use of Gaussian diffraction theory. The Rayleigh integral is used to prove the core of Gaussian

theory: the diffraction field of a Gaussian radiator also is described by a Gaussian function. The

parabolic approximation used by previous authors is not necessary to this proof. Comparison of

the Gaussian beam expansion and Fourier series expansion reveals that the Gaussian expansion is

a more general and more powerful technique.

The -method combines the Gaussian beam superposition technique [Wen and Breazeale, J.

Acoust. Soc. Am. 83, 1752-1756 (1988)] and the Finite element solution to the parabolic

equation [Huang, J. Acoust. Soc. Am. 84, 1405-1413 (1988)]. Computer modeling shows that

the new method is capable of solving for the sound field even in an inhomogeneous medium,

whether the source is a Gaussian source or a distributed source. l can be used for horizontally

layered interfaces or irregular interfaces. Calculated results are compared with experimental

results by use of a recently designed an improved Gaussian transducer in a laboratory water tank.

In addition, the power of the Gaussian Finite element method is demonstrated by comparing

numerical results with experimental results from use of a piston transducer in a water tank. A

publication detailing these results is in preparation.



Patent Application. A patent application has been filed to cover the advances made in the

fabrication of a Gaussian transducer. The patent in the names of Dehua Huang and M. A.

Breazeale has been filed by Airmar Technology Corporation, current employer of Dehua Huang,

on December 8, 1992. It is anticipated that a number of licenses will be issued for various

applications of the Gaussian principle to different situations.

Elastic Nonlinearities in Single Crystal Gallium Arsenide. Experimental investigation of

single crystal gallium arsenide nonlinearity has been completed and the results have been

published. Gallium arsenide is a technologically important crystal whose nonlinearity had not

been investigated. The harmonic generation technique is ideally suited for measurement of a set

of third order elastic constants of this material, and the variation of ultrasound velocity with

applied hydrostatic pressure completes the set of six third order elastic constants. By using a

modification of the Keating theory for cubic lattice solids we were able to obtain a complete set of

third order elastic constants between 77K and 300K.

Nonlinear Techniques for Nondestructive Evaluation of Composites. A new

investigation has been opened up with the use of nonlinear techniques to investigate composites

and heat damage in composites. Since very little scientific information is a%,:iilable about the

physical behavior of composites, it is highly desirable that new techniques, such as the harmonic

generation technique, be applied to collection of data on composites. It also desirable to use more

standard techniques to collect data on composites. Tentative measurements have been made of

the behavior of composites. Tentative measurements have been made of the behavior of

composites. We find that the velocity in the basal plane is approximately one-third of that in the

axial direction. Thus, composites are highly anisotropic the behavior of composites; however, it is

clear that primitive cells in composites are not hexagonal. Thus, much is to be learned about the

linear and the nonlinear physical properties of composites.



Publications:

1. "Elastic Nonlinearities in Single Crystal Gallium Arsenide Between 77 and 300OK", M. A.

Breazeale, D. Joharapurkar and D. Gerlich, in Proceedings of 14th International Congress

on Acoustics, Vol. 1A, Li Peizi, Ed., Academia Sinica, Paper AI-1 (1992).

2. "Nonlinear Acoustics and How She Grew", M. A. Breazeale, in Review of Progress in

Ouantitative Nondestructive Evaluation, Vol. 111B, D. 0. Thompson and D. E. Chimenti,

eds., Plenum Press, New York, pp. 2015-2023 (1992).

3. "Temperature Dependence of Elastic Nonlinearities in Single Crystal Gallium Arsenide," D.

Joharapurkar, D. Gerlich and M. A. Breazeale, !ournal of A• 1,1 Physics, 72, 2202-220-

(1992).

4. "Electric Potential in Piezoelectric Medium and its Influence on Measurement of the

Ultrasonic Nonlinearity Parameter," W. Jiang, G. Du and M. A. Breazeale, in Proceedings

of 14th International Congess on Acoustics, Vol. 1A, Li Peizi, ed., Academia Sinica, Paper

A1-5 (1992).

5. "Nonlinear Techniques for Nondestructive Evaluation of Composites," M. A. Breazeale, in

Proceedings of Conference on Characterization and NDE of Heat Damage in Graphite

Ery Composites, Orlando, FL, April 27-28, 1993.



M Al-I
ELASTIC NONLINEARITIES IN SINGLE CRYSTAL By measuring the amplitudes A2. AI, the freuency (fiom which k
GALLIUM ARSENIDE BETWEEN 77 AND 300 K can be calculated), and the sample length x in the principal

directions one can evaluate the nonlinearity parameters. The
M. A. BREAZEALE, D. N. JOHARAPURKAR AND results for GaAs are shown in Fig. I plotted between 77" K and
D. GERLICH umo temperature.

National Center -for Physical Acoustics, Colieum EDrive, 12

University, MS 38677, USA -, , i

X 10.
Third order elastic (MOE) constanits arc 1 ecessary to a U

fundamental description of many 9hysical propertis of solids 9

resulting from lattice nonlinearity. The propertiesir.question . 8
include thermal expansion, heat conduction, tcm perature 7 ,•[ll0]
dependence of the specific heat, terpetaure •nd-ptssre 9.
dependence -of the elastic constants,.fiercebw n the L 6-
adiabatic and isothermal elastic constant, phonon viscosity, 5- --... _ "
thermal attenuation of acoustic waves, shock eforiuition of
materials, acoustically induced, static ist"s an .nd.:strain,,. ctc 4
Previouslyl-2 we have shown that reasut n,u .t6fuhlmrasonic 3
harmonic generation gives infomatiom about conibinations of TOE z
constants from helium temperatures to at least 3.0" K. Shice no z
single technique gives all six TOE constants of cublccrystals it 0[1001
was necessary to introduce a second technique in order to plot all 01
six of the TOE constants of the semiconductor Gallium Arsenide 100 200 30,I
(GaAs) over a wide temperature range. The purpose of this report
is to describe the technique used because it makes optimnin use of TEMPERATURE(K)

theory and experiment to arrive at data which would not be Fig. 1. Temperature dependence of nonlinearity parameters of

available otherwise. The technique should be applicable without GaAs.
modification to the evaluation of all TOE constants of all To evaluate the individual TOE constants from these data.
zincblende structure compounds. The data on GaAs verify its additional information is needed. The Keating3 theory is a three-
validity, parameter theory from which one can calculate all six TOE

constants. Thus, in principle these data plus the Keating theory
Measmn t of Harmonic Generation would be sufficient to isolate all six TOE constants of GaAs. We

The propagation of a finite amplitude ultrasonic wave chose to provide additional experimental data, however.
along the three princi,'al directions in a cubic lattice is described by

Measurement of Pressure Variation of Sound Velocity
2 0 K2' 2 U aU ~a2O The most accurate evaluation of TOE constants of cubic

P0-ý-= K12 + (3 K2 + K3 )- - (1) crystals at room temperature appears "to come from the
combination of harmonic generation data with those taken by use
of pressure variation of ultrasonic wave velocity.4 A pressure

Assuming an initially sinusoidal wave allows one to write bomb was used to take pressure variation data at room temperature
a solution in the form with the same GaAs samples. A plot of the normalized frequepcy

(essentially sound velocity) as a function of pressure is given in
U = A I sin (ka - ao) + A2 cos 2(ka - wt) + ... (2) Fig. 2. The cwrves all are straight lines except for the longitudinal

wave in the 11111 direction (labelled [111],[111 in Fig. 2). The

where slopes of these curves can be used to calculate combinations of
TOE constants at room temperature.

1,003-A2 = -13 + n) A 2 k2 X. (3) _04

Defining the nonlinearity parameter 1121 ii01401

{•= -13 iK---(4)Ii "~ 1J )l~
K 2 11111.101 11

allows one to write the nonlinearity parameters in terms of
measured quantities 0.999-

A20 1000 20001= __Z . (5) olE~SI°°° (ta,) 'o

A 2k
2 x 

PSUE(w
Fig. 2. Variation of normalized frequency (ultrasonic wave

velocity) with pressure in GaAs.

where k= 2 is the propagation constant and x is the sample

The results of the two sets of measurements can be
length. In terms of TOE constants the nonlinearity parameters combined to isolate all six TOE constants at room temperature.
along the principal directions are The results have been evaluated for GaAs and compared with

010(= -[3 + c 11  room temperature values of other researchers. Having these
values one now is able to use the Keating model along with the

C11 1 + 3C112 + I harmonic generation data to calculate the tepertum depenmdece
0 1 -(3 + -2(C + 3F2-C) (6 a,b,c) of each TOE constant. Results of the values of all six TOE

(c0 Ionstants of GaAs between room temperaturc and liquid nitrogen

C_1 1 +6Cll2+ 1 2 C1 44+24Cj66 +2CI_16 temperature are given in Figs. 3 and 4 in which the curves a least

3(CI I + 2C 12 + 4C 4 4 ) s qu."res fits of the data with a fifth order polynomial. Most of the



TOE constants are linear functions of temperature; however, both We have examined the strong Cauchy relations over the available
C112 and C1 23 exhibit remarkable temperature variations and temperature range by comparing the measured quantities
emphasize the importance of being able to measure these
fundamental parameters c'-ae a range of temperatures. C1 12 - 4C155 and C123 + 6C144 + 8C456 with 2CI11 and find

thdt there is a tendency for better agreement with the TOE constant2 C~auchy relations as OK is approached. Since both the Keating
model and the Cauchy relations strictly should apply only at OK,

this may indicated that the lattice interaction in GaAs is basically of
--. ... . .... the cetar'- type, and the deviations from the Cauchy relations are

SC456 " "caused by thermal effects. An gnalogous observation has been
H made for germanium and silicon. I
Z E -2<_ C166 SUM="

H All six TOE constants of GaAs have been evaluated
o -4 between room temperature and liquid nitrogen temperatures. Two

of the TOE constants, C112 Ind C 12 3, exhibit considerable
Z o variation, (at least a i'ctor of 10 for C123). The other four are
0 .almost linear functions O'temp ture.

U -6 The technique w- have used can be applied directly to
-C I I evaluation of the TOF constants of all zincblende structure

W compounds. Other structures or samples in which interstitials or

0 -8. dislocations are prominent require further analysis.
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Although the Cauchy relations usually are evaluated for the
,.xond order elastic constants (from the sound velocity), they also

can be evaluated for the TOE constants as well. If all lattice
interactions are of the central force type, and each atom is a center
of symmetry, then all elastic constants should obey the Cauchy
relatiorns. For the TOE constants the Cauchy relations are

C1 12 = C155  (7)

C123 = C144 = C4 56  (8)

If in addition the short range repulsive interaction is the dominant
one, there are the so-called "strong" Cauchy relations

CI I = 2CI12 = 2C155 (9)

CI2 = CI44 - , O)



NONLINEAR ACOUSTICS AND HOW SHE GREW

M. A. Breazeale

National Center for Physical Acoustics
University of Mississippi
University, MS 38677

INTRODUCTION

When I was asked to review the progress in nonlinear acoustics I realized that
considerable progress recently has been made even in a relatively restricted field, the
nonlinear acoustics of solids. For example, there recently was a correlation of the
nonlinearity parameter in zincblende structure crystals with interatomic potential functions.I
Later a generalization 2 showed that in essentially all symmetries of crystalline solids one
finds that the nonlinearity parameter depends exclusively on the Bom-Mayer hardness
parameter, meaning that in all crystalline solids the magnitude of the nonlinearity parameter
is largely determined by the shape of the interatomic potential function. Furthermore, with
crystalline solids having a larger nonlinearity parameter one finds an increasingly important
zero-point energy contribution. 2 The nonlinearity parameter also has been correlated with
the Anderson-Gritneisen parameter in solids 3 and temperature dependence of the third
order elastic constants of NaCI-structure alkalide halide crystals.4 Of more technological
interest is the fact that the nonlinearity parameter has been correlated with the ultimate yield
strength of isotropic solids 5 and with hardness in steels. 2 Nowadays the magnitude of the
nonlinearity parameters of such inhomo~geneous substance5 as muscle tissueb, PZT
ceramics 7 and high Tc superconductors6 such as YBa2Cu 3O7-5 , are being measured.
Results on some of these materials form the substance of this report.

With the wide-ranging investigations to be reported, one tends to give the
impression that there has been randomness in the development of nonlinear acoustics, that
it "just grew" as my title implies. The truth is that it did. Nonlinear acoustics just grew.
As early as 1660, Hooke discovered that we could get reasonable results just by ignoring
nonlinearity. Subsequently, more subtle observations required a nonlinear theory. In this
case there still was the desire ob "keep things simple" and use only a linear theory. Whether
or not the "linearization" worktd depended on the detail desired in the agreement between
experiment and theory. At that time the understanding of nonlinearity was not sufficient to
allow one to predict where and how it would be encountered. This is the reason for the
lack of systematic development. Early on, scientists did not understand that the nonlinear
theory is the more fundamental one. Having become enlightened, some scientists now are
developing a systematic approach to nonlinearity, but many of the developments have been
random, analogous to the way Topsy in Uncle Tom's Cabin "just grew." Hlarriet Beecher
Stowe wrote Uncle Tom's Cabind in Stowe House near Bowdoin College, so it is
appropriate that I quote directly from her description of Topsy so we can have a mental
picture of how Topsy grew, and by analogy, how nonlinear acoustics grew.

Review of Progreis £tA Quatrttative Nond-stracIt"w Evaluainot. Vot I I
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One morning, while Miss Ophelia was busy in some of
her domestic cares, St. Clare's voice was heard, calling her
at the foot of the stairs.

"Come down here, cousin; I've something to show
you."

"What is it?", said Miss Ophelia, corr,*.ng down, with
her sewing in hand.

"I've made a purchase for your department, -- see
here," said St. Clare; and, with the word, he pulled along a
little Negro girl, about eight or nine years of age.

Sitting down before her, she began to question her.
"How old are you, Topsy?"
"Dunno, Missis," said the image, with a grin that

showed all her teeth.
"Don't know how old you are? Did n't anybody ever

tell you? Who was your mother?"
"Never had none!" said the child, with another grin.
"Never had any mother? What do you mean? Where

were you born?"
"Never was born!" persisted Topsy, with another grin,

that looked so goblin-like, that, if Miss Ophelia had been at
all nervous, she might have fancied that she had got hold of
some sooty gnome from the land of Diablerie; but Miss
Ophelia was not nervous, but plain and business-like, and
she said, with some sternness, --

"You mus n't answer me in that way, child; I 'm not
playing with you. Tell me where you were born, and who
your father and mother were."

"Never was born reiterated the creature, more
emphatically; 'never bad no father nor mother, nor nothin'.
I was raised by a speculator, with lots of others. Old Aunt
Sue used to take car on us."

The child was evidently sincere; and Jane, breaking into
a short laugh, said, --

"Laws, Missis, there 's heaps of 'em. Speculators buys'em up cheap, when they's little, and gets 'em raised for
market."

"How long have you lived with your master or
mistress?"

"Dunno, Missis."
"Is it a year, or more, or less?"
"Dunno, Missis."
"Laws, Missis, those low Negros, -- they can't tell;

they don't know anything about time," said Jane; "they don't
know what a year is; they don't know their own ages."

"Have you ever heard anything about God, Topsy?"
The child looked bewildered, but grinned as usual.
"Do you know who made you?"
"Nobody, as I knows on," said the child, with a short

laugh.
The idea appeared to amuse here considerably; for her

eyes twinkled, and she added, --

"I spect I grow'd. Don't think nobody never made
m e. "

This is my impression of the subject of nonlinear acoustics. I have yet to find
somebody who claims to be the father of the subject, and I doubt that I will meet the
mother. The subject "just grow'd." Almost twenty years ago I made some observations
for the International Journal of Nondestructive Testing.10 The conclusion written at that
time bears repeating, for I think it will set the tone for this entire session.
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Nonlinear behavior of solids in which finite amplitude
ultrasonic waves propagate can be demonstrated. It can also
be predicted from an extension of elasticity thcory. It is
hoped that some of the phenomena observed can serve as the
basis of new, exceptionally sensitive nondestructive testing
techniques.

Since that time major changes have taken place in the subject. Nondestructive
Testing has become nondestructive Evaluation. In addition correlation is being observed
between nonlinearity and work hardening, for example, or nonlinearity and hardness of
steels. Such efforts are of fundamental importance to nondestructive evaluation and to
development of nondestructive evaluation techniques. There is another aspect of the
development of a science that cannot be ignored. That is the basic knowledge of no,,linear
material interactions and the mathematical description of them. This is the reason we
introduced third order elastic constants in the early sixties. At the time they were
introduced we didn't have the foggiest notion about their meaning. We didn't even know
that third order elastic constants are almost always negative and have a magnitude of the
order of ten times the magnitude of the second order constants. We still are trying to
understand them, but we know more about them than we did then. Nowadays we know
enough to make measurement of the nonlinear behavior of a solid and try to correlate the
measurement with intrinsic properties. This can succeed, but it will succeed only to the
extent that we thoroughly understand that some approximations and assumptions are
involved, and recognize them at the time we are interpreting data. For example, there are
such things as intrinsic nonlinearities and then there are nonlinearities arising from the
characteristics of individual samples. The intrinsic nonlinearities arise from interatomic
forces in the crystalline lattice, and can correctly be described by third order elastic
constants. The other nonlinearities can arise from strains, dislocations or other
imperfections in the sample. Sometimes our measurement techniques will separate the two,
and sometimes not. It is up to us to make a correct interpretation of the data. Only then can
we develop genuinely dependable techniques for NDE based on sample nonlinearity.

Some of the early experiments are illustrative of what we have to be aware of if we
are to make sense of nonlinearity measurements, so I would like to turn back history for
more than a quarter-century and present measurements made at that time, to show how
much we have progressed in measurement--even of samples we measured initially, and to
end with recent, very provocative measurements on piezoelectric ceramics, and even high
Tc superconductors.

ARCHAEOLOGY OF NONLINEARITY

If we start digging we can discover that one participant in the early prehistory of
nonlinear acoustics was my colleague Don Thompson. He and I will reminisce while the
others can marvel that we had any inkling of the meaning of nonlinearity so far back in
history. In order to facilitate discussion, it is necessary to write down the basic form of the
nonlinear equation and of its solution. Near the end of the discussion I want to point out
some implications about the form of the nonlinear equation that conies from our analysis of
PZT.

THEORY

To correctly derive the equation describing propagation of an ultrasonic wave in a
nonlinear crystalline lattice we begin with the definition of the elastic potential energy in
terms of strains by writing an expansion in the form:

O(rl) = 1- Y j Cijkl nlij TIM + I I lijnlklrmn +. .
2 ikl i ijlklnn1

The Cijkl are the elastic constants that anpear in the linear approximation. T'he Cikjimn are
the third order elastic constants. They are the set of coefficients that make the use of the
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first nonlinear terms meaningful. At this point one can introduce tie effect of any
additional strain, such as piezoelectricity, etc., by adding appropriate terms. Once we
proceed beyond this point, however, the correct introduction of additional strains becomes
increasingly difficult. One favorite technique for forcing nonlinear acoustics to grow (like
Topsy, to be sure), is to include only the elastic terms given in Eq. I and to proceed with
the derivation of the wave equation in which one defines a nonlinearity parameter. The
next step is to see whether this wave equation agrees with experiment in various solids by
determining whether the nonlinearity parameter has in it effects that the theory does not
account for. If it does, one should begin again and account for the newly discovered
strains in Eq. 1 and rederive everything. This is the point at which many physicists behave
as speculators. They try to market their results rather than to correctly rederive them. To a
certain extent, the authors of this treatise will behave as a speculator, as it develops. To
compensate, there is an implied, promise to complete the job at some further date. Thus, the
speculator has integrity after all.

There are several ways to proceed once Eq. 1 has been written. The most direct is
to define the Lagrangian function and use Lagrange's equation to derive the nonlinear wave
equation. By using the appropriate form of Lagrange's equations and specializing to a
specific orientation of the coordinates with respect to the ultrasonic wave propagation
direction one can write the nonlinear wave equation in the form

pxi=-- u

ka t i = IJi )k (2)

which shows exactly how the strain energy with the elastic constants enters the nonlinear
wave equation. If the strain energy correctly accounts for action of all of the forces in the
sample, then the derived nonlinear equation correctly describes the propagation of an
ultrasonic wave in the sample. Aye, there's the rub. I am not sure that always the
averaginig effect of all of the molecules propagating the wave is adequately described by the
intrinsic third order elastic constants. But we have no alternative at the moment but to
assume that it does and proceed with our analysis.

The thing that pleased us back in the dark ages, and the thing that made pnssible
much of the progress in nonlinear acoustics, was the fact that when one specializes Eq. 2 to
pure mode directions one finds that the equations are separable and that the longitudinal
wave is described by an equation of the form

aU U2 a 2U

Po = K2  + (3K 2 + K3 ) O (3)
at 2t- a2  Da aa 2

in all three principal directions in a cubic lattice, and in an isotropic medium as well. We
wrote the equation in this form to emphasize the fact that it applies in all principal
directions, then defined K2 and K3 as shown in Table I so one could see the role played by
the third order elastic constants. The definitions of the nonlinearity parameter

3K 2 +K 3  (4)
K2

emphasizes the fact that it is the ratio of the coefficients of the nonlinear term to the linear
term in the nonlinear wave equation. This nonlinearity parameter, with the definitions
given in Table I, only accounts for elastic nonlinearities. To account for other effects, the
expressions for the nonlinearity parameters would be more complicated.

If one derived the nonlinear wave equation in a slightly different way he could
define the analogous nonlinearity parameter for fluids. It was interesting to discover that
the nonlinearity parameter for solids is of the same order of magnitude as the nonlinearity
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Table I K2 and K3 for (100), (110), and (111) Directions in Cubic Crystals

Direction K2  K3

(100) cl Cj11

(110) cll + c12 + 2c 4 4  CI1 1 + 3C,1 2 + 12CL6 6
2 4

(111) lCl + 2c12 + 4c44 CI I + 6C 1 12 + 12C144 + 24C166

3 9
+ 2C 1 23 + 16C456

9

Table II Comparison of structure, bonding and acoustic nonlinearity parameters along the
[100] direction of cubic crystals.

STRUCTURE BONDING RANGE OF 13

Zincblende Covalent 1.8 - 3.2

Flourite Ionic 3.4 - 4.6

FCC Metallic 4.0 - 7.0

FCC Van der Waals 5.8-7.0
(inert gas)

BCC Metallic 5.0-8.8

NaCI Ionic 13.5 -15.4

parameter for fluids. This can be confirmed by comparing Tables 11 and Ill. Table II gives
nonlinearity parameters for a number of solids. Table III gives B/A and 13 = B/A + 2 for
fluids. For solids the nonlinearity parameters range from 2 to 15. For fluids the range is
from 6 to 14, approximately the same. This range can serve as reference for some data I
will present later.

The solution c" 7q. 3 allows one to show how nonlinearity parameters can be
measured. A perturbation solution takes the form

U=A sin(ka - wt)- 13 A 2 k2a cos 2(ka -ot) +... (5)

This solution shows that an iiiitially sinusoidal ultrasonic wave in a solid will produce a
second harmonic whose amplitude is proportional to the nonlinearity parameter. Thus, if
we can measure the amplitude of the fundamental and the second harmonic after the
ultrasonic wave has propagated through the sample, we can determine the nonlinearity
parameter

1 -A 2 
(6)A 2 k2a

I

since the propagaton constant k =-, where c is the wave velocity. The sample length
is a. Measurement of 03 as a functicn of tcmperaturc can be quite informative.
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Table III Values of B/A and P3 for fluids at atmospheric pressure

Liquid Temperature B/A = B/A + 2
Cc)

Water-Distilled 0 4.16 6.16
20 4.96 6.96
40 5.38 7.38
60 5.67 7.67
80 5.96 7.96

100 6.11 8.11
Acetone 30 9.44 11.44
Benzene 30 9.03 11.03
Benzyl Alcohol 30 10.19 12.19
CCI4 30 11.54 13.54
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(1001

S10

1110]

0

=Ea anno Ofin~umm a3

0 I

0 100 200 300

TEMPERATURE (K)
Figure 1. Temperature variation of the nonlinearity parameters

in the principal directions of NaCI.

COMPARISON OF THE N4ONLINEARITY PARAMETERS OF NaCI, PZT and
YBa2 Cu3 O>7-

Recently we measured the nonlinear bc-havior of NaCI. The nonlinearity parameters
for the principal directions in NaCI covered a wide range of values, but each did not change
much with temperature between room temperature and liquid nitrogen temperature.
Measured nonlinearity parameter values in the three principal directions in NaCI are given
in F;- 1. Different samples were used for each direction; however, measured values
differed only in the I Ill]I direction. The o~igin of the discrepancy is no( known, even
though it originally was thought to be the effect of OH- ions. It is clear (hat the nonlinearity
parameter in the (1111I direction is extremely sensitive to sample difference, however.
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The sample of NaCI is a single crystal, so there is variation in the magnitude of the
nonlinearity parameter for different orientations. When one has a sample such as lead
zirconate titanate (PZT) one has a ceramic which doesn't necessarily exhibit crystalline
properties. We recently measured the nonlinearity parameters of two types of PZT both in
the polarized state and in the unpolarized state. The nonlinearity paiameter was measured
along the direction of polarization. Results for the two samples of PZT are given in Figs.
2. 3, 4, and 5 as a function of temperature. In the cubic crystal NaCI, the magnitude of the
nonlinearity parameter is 14 or less. Well below the Curie temperature Tc, the nonlinearity

TC
2000

1750 ---- Heating

S1500 -0" Cooling

• 1250

?1 1000

750

0
Z 500

250

0 50 100 150 200 250 300 350 400

Temperature (°C)
Figure 2. Temperature dependence of the nonlinearity parameter in

K 1 -Unpolarized sample of PZT.

Tc
2000 ............... I................

1750 0 Hcading

1500 --- Cooling
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Z 5007

250 ,040

0 L0t00 0
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Figure 3. Temperature dependence of the nonlinearity parameter in

K I -Polarized sample of PZT.
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Figure 4. Temperature dependence of the nonlinearity parameter in
S l-Unpolarized sample of PZT.
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Figure 5. Temperature dependence of the nonlinearity parameter in
"S I -Polarized sample of PZT.

parameters in the samples of PZT are in this range. However, as the Curie temperature is
approached the magnitude of the nonlinearity parameter becomes anomalously high, as
high as 1500 in one case. The origin of this anomalously high nonlinearity parameter is not
known at the moment. We assume that the large nonlinearity parameter is produced by
effects other than elastic ones. Thus, it becomes necessary for this speculator to modify
Eq. 1 by including other considerations. Once this is done, it will be necessary to rederive
the nonlinear wave equation. Only then will one be certain whether the anomalously large
magnitudes of the nonlinearity parameters of PZT really have meaning, or whether a
completely new theory is necessary to explain this new development in the field of
nonlinear acoustics.
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20 ______________

10 Corrected

Uncorrected

0 100 T (K) 200 300

Figure 6. Temperature variation of 0i in the high Tc superconductor
YBa2Cu3 OT-6 (Tc - 94"K).

The final example is the behavior of the nonlinearity parameter of the high Tc
superconductor YBa2Cu 3 O7-8. We measured the second harmonic as a function of
temperature through the transition temperature Tc between the normal state and the
superconducting state. When we interpreted the results in terms of the nonlinearity
parameter 0, we got the results shown in Fig. 6. At room temperature (30'C) the
nonlinearity parameter had a large value, approximately 14. At lower temperatures the
attenuation became noticeable, so we corrected for attenuation. The result is that both in the
corrected data and in the uncorrected data the nonlinearity parameter appears to vanish at the
transition temperature Tc, which is just below 100"K. This anomalous effect in the
behavior of the ceramic YBa2Cu3O7 .- is just opposite to that of PZT at the Curie
Temperature. Considerable theoretical speculation now is desirable to explain the behavior
of the nonlinearity parameters of ceramics near transition temperatures.
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"Temperature dependence of elastic nonlinearities in single-crystal
gallium, arsenide
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The six third-order elastic moduli (TOEM) of single-crystal gallium arsenide were determined
by a combination of measurements of ultrasonic second-harmonic generation, and pressure
dependence of the second-order elastic moduli, at room temperature. In the temperature range
77-300 K, the nonlinearity parameter for the propagation directions [100], (110], and [IIl] was
measured. Utilizing the Keating model, these data were used in evaluating all six TOEM as a
function of temperature. The TOEM CI I, C144, and C456 turn out to be nearly constant in the
above temperature range. The Cauchy relations seem to be obeyed somewhat better as 0 K is
approached. The measured values of the TOEM have been employed in calculating a
Murnaghan equation of state, which predicts a somewhat higher volume change than the
measured one. The elastic Griineisen constants deduced from the TOEM are in reasonable
agreement with the thermal ones in the high-tea-perature limit.

I. INTRODUCTION The Keating model9 has been spectacularly successful
in describing the linear and anharmonic elastic properties

The nonlinear elastic properties of diamond and zinc- of the diamond structure materials germanium and silicon.
blende structure materials has been the subject of numer- Since the number of adjustable parameters in the model
ous studies.' In most of these studies only the room- (two for the second order, three for the third order) is
temperature properties of the materials have been smaller than the number of elastic moduli in each case
investigated, and only relatively few have been measured as (three second order and six tnird order), the applicability
function of temperature.'-3 Several investigators have de- of the model may be readily tested by comparing with
termined the third-order eijstic moduii (TOEM) of GaAs experimental data. From measurement of SHG in the three
in the past," but all this work has been restricted to room longitudinal pure propagation modcs ([100], [110], and
temperature. Since the elastic nonlinearities are often cor- [111]) ii the tempefature range 4-300 K, and utilizing the
related with various other anharmonic properties, knowing Keating model, all six TOEM as a function of temperature
the temperature dependence of the elastic nonlinearities is could be determined. 11 It should therefore be of interest to
quite vital in many instances. Due to the lack of more examine whether the Keating model9 and its extension'0

detailed information, researchers sometimes have assumed are applicable to the zinc-blende structure as well, and
that the elastic nonlinearities in solids, specifically the whether all six TOEM as a function of temperature may be
TOEM, are temperature independent. 7 In order to clarify evaluated in the same way. These questions are examined
this question somewhat further, the present study was un- in the present work.
dertaken to measure the TOEM of single-crystal GaAs as
a function of temperature. We have measured all six
TOEM at room temperature by combining results of ,'l. EXPERIMENT
second-harmonic generation (SHG)' and hydrostatic pres- -
sure dependence of the second-order elastic moduli Single-crystal boules of GaAs, n-type, Si doped, having
(SOEM). 8 In the temperature range 77-300 K, the three a room-temperature resistivity of 2.7 x 10-3 fi cm, carrier
linear combinations of the TOEM available from SHG concent;ation of 1.2 X 10's cm- 3, carrier mobility of 1990
have been determined experimentally. Utilizing the Keat- cm2 V-1 s- 1, were purchased from Crystal Specialties In-
ing model,9 and its extension to the zinc-blende structure,' 0  ternational. Two right parallelepipeds were cut from the
all six TOEM have been determined. This is possible be- above boules, the faces of one corresponding to crystalline
cause the validity of the extended Keating model at room planes (100), (110), and (110), the other one correspond-
temperature can be verified by experimental data. Thus, ing to (111), (110), and (112) planes. Opposite faces were
this investigation presents all six TOEM of GaAs as a lapped flat and parallel. For the SHG measurements, Ion-
function of temperature in the range 77-300 K. gitudinal ultrasonic waves, fundamental frequency of 30

MHz, propagating in the [100], [110], and [ 1 I1] crystalline

"Present address: Department of Physics. Sindhu Mahavidyalaya. directions were utilized. For the hydrostatic pressure runs,
Nagpur 440017, India. longitudinal and shear waves, 15 MHz frequency, propa-"b)Permanent address: School of Physics and Astronomy, Raymond and gating in the [1 101 and [Il ] directions were used. The
Beverly Ssckler Faculty of Exact Science. Tel Aviv University. Tel waves were generated with quartz crystalline transducers,
Aviv 69978, Israel

"On assignment from Department of Physics and Astronomy, X and Y cut, bonded to the specimens for the room-
University of Tennessee, Knoxville, Tennessee 37996-1200 temperature measurements with benzcphenone, while for

i;n,> I ArP,,Ahve 7q I-, 1;• Sntomrnhpr 1Qi2 0021-R979/q2/iR;O),007O04 no I 1`92 Amprocan tn-lwulp of Phvtscs 2202



the lbw-temperature measurements the backing of scotch 2K 3 [110] K 31100] C,
tape was used as a bonding agent. C 44 =C 2  3 12 4'

The room-temperature ultrasonic velocity as well as its
change under hydrostatic pressure were determined by the and
gated double-pulse suprcosition method,' 2 which pro- 9K 3[1111] 3C, 3C2 C3
vided a resolution of 10- . The hydrostatic pressure was C4 56 168
generated by means of a small manual hydraulic pump,

using light weight oil as the pressurizing fluid, generating a The corresponding errors are as follows:
pressure range of 0-0.2 GPa. The sample was placed inside I I I I = 1'&K3[ 100]1,
a stainless-steel pressure vessel which was connected to the
pump and a Bourdon gauge, which served for measuring I AC 23 1 < I A.K3 1001] I + I AC 3 1,
the pressure in the system. These measurements yield the IACt I AK 3 1 10011
values of the three SOEM, C1 P, c12, and c44, as well as the IXC, 21< +
three linear combinations of the TOEM, 3  2

IAK3 [l10]1 IAK3 [10011 IACIct~ct+2c,2, AC,55I< 3 + 24 + 8

C2=C,4 4 +2C,5 5, (1)

C3 = C1II - C123- I AC,44 <I AC 212AK 3[ll01 I IAK3A100] I
3 12

In the SHG measurements, one determines the ampli-
tudes of the fundamental and second-harmonic wave, AI I ACI
and A2, and these are directly related to the nonlinearity 4
parameter f6, which is given by and

6 A 2 I 3K2+K3(2) 91AK3 [1ll]l 31ACII 31ACqI [AC3I
3=,)k'a K2  (2) IAC4sI6 < 16 + 16 + 44 + 8

where k is the wave vector, a the length of the sample. K2  In the present investigati.n, at room temperature the
and K3 are the second- and third-order coupling constants. values of K3 for the three directions were evaluated by
These constants are linear combinations of the SOEM and measuring the absolute values of A, and A2. In the low-
TOEM, respectively, e.g., in the cubic system (Laue group temperature run, a relative measurement of P was carriedCI), for the three pure propagation modes, [100], [110], tmeauern eaiemaueeto//a are
and[IIfor, they tree puren prop n mout. This was effected by keeping both values of A, and A2
and [111], they are given by' constant during the temperature run. A, was kept constant

K 2[ 1001 =C11, by varying the intensity of the sound energy delivered to
the transducer, while A2 was kept constant by changing the

K 2 [1l0]=(ctI+C12+2c 4 4 )/2, (3) bias voltage Vb on the capacitive transducer. As can be

K 2 [ 111] = (c, I + 2C12 + 4c")/3, shown,' the following relation is obtained for relative val-
ues of B:

and
,6(T) Vb(TR)CD(TR)K 2 (T)

K3 [ 100]= =C,,,, /(TR) Vb(T)CD(T)K 2(TR) (5)

K 3[110]=(C,,,+3Cj12 + 12C155 )/4, (4) '.Here, T is the temperature, TR a reference temperature

K 3[111=(C,,,+6C,12 +2C,23 +12C, 44±24C,55  (normally room temperature), and CD is the capacity of
the capacitive detector utilized in the determination of A,

+ 16C 456)/9. and A2.'4 The temperature dependence of the SOEM, re-
quired for deducing the values of K3 from P, was taken

As can be seen from Eqs. (1) and (4), measuring the from the work of Cottarn and Saunders.' 5 We measured
pressure derivatives of the SOEM together with SHG mea- sound velocities in the three principal directions and found
surements for the [100], [i 10j, and [Ill] direction enables that our values agree within experimental uncertainty with
one to determine of all six TOEM with their propagated those of Cottarn and Saunders.
errors. The six TOEM are as follows:

C1 , = KI [ 100], !11. RESULTS

C1 23 = K3 1001]- C3, For the pressure dependence of the SOEM, five inde-
C, K3[1001 pendent propagation modes were available: one longitudi-

C,, 2  2  2 nal and two shear modes in the [110] direction, and a

Ionyittudinal and -hear mode in the I111] direction. The
K31I 1101 K3 [ 100j C, experintmal seLup I tewh .a icbonam trequci,-5 j, as a

3 24 8' function of pressure P. In Fig. I we present the changes in



1.004 r TABLE 11. Values of the linear combinations of the TOEM. C1, C 2, and
C3 (units are GPa).

1.003 C, C2  C,

Present work -- 1401-L1 -512*8 -538±8

1.002 - 4 McSkimin and Andreatch' - 1396 -536 - 565

+ Reference 5.

1.001

shown in Table JV, together with similar data derived from
1.000 the work of McSkimin and Andreatch.5 As can be seen, the

agreement of both sets of data with the results of Mc-
0.9, Skimin and Andreatch is very good. From the data shown

0 1000 2000 in Tables II and IV, the six room-temperature TOEM may
PRESSURE (bar) now be determined, and the results are shown in Table V.

Also shown in the same table are analogous results ob-
3. I. Normalized resmmoe frequency as a function of pressure for tained by other investigators."-' As can be seen, the agree-
ious propapgtion modes at room temperature:@ [110],[1110]; +[I 11], ment among the different results for all six room-
11, A [110). [001]; U [111), [011]; # [110]. [110]. temperature TOEM is very reasonable.

In Figs. 3 and 4, the nonlinearity parameter P and K3
are shown as a function of temperature in the range 77-300tenormalized resonant frequency f,/fo as a function of P, K. As can be seen, both fl and K3 vary less than 25% over

tere fo is the resonant frequency at P=0. The dots are this temperature range, although a temperature depen-

! experimentally measured data points, while the straight dence is obvious. For every sample the experiment was

es are a least-squares fit to these points. The slopes of repe at least t or tempertue runt pro
:selins, ( ffo)49P ar diecty rlatd t th prs- repeated at least three times for temperature runs to pro-:se lines, d( f,/fo)/8P, are directly related to the pres- duce the data plotted.

re derivatives of the natural modulus, pOW 2, where Po is

equilibrium density and W is the natural velocity," IV. DISCUSSION

T 1(oW 2 );=2 ((df,/fo) ) (6) A. Keating model
(P0Wr0  ( " 0 The Keating model9 has been very successful in de-

ýre, the subscript 0 denotes the equilibrium state, while scribing the elastic properties of diamond structure mate-
! prime denotes the pressure derivative, (poW 2)0 is the rials. The theory is very plausible, physically intuitive, re-
'EM for the spicified direction and is denoted by w. The quires a minimal number of adjustable parameters, and is
ues of (poW2 )•, as deduced from the slopes of Fig. 1, cast in a rotationally invariant form. It expresses the qua-
;ether with their associated errors, are shown in Table I. dratic part of the strain energy in terms of two second-
e error bars for the individual data points in Fig. I are order force constants: a bond-stretch constant a, and an
nificantly smaller than the statistical scatter. Hence the angle-bend constant P. The cubic part is expressed in terms
tistical scatter of the least-squares fit to the straight line of three third-order force constants: a bond-stretch con-
ised as the probable error. In Table II, the values of the stant y, an angle-bend constant 6, and a mixed bond-
-ar combination of the TOEM, Cl, C2, and C3, together
h their errors, are shown, as well as the analogous quan-
es derived from the work of McSkimin and Andreatch.5  12
;ure 2 presents plots of A 2 vs A2 for the three SHG
)pagation directions [100], [110], and [1111 at room tern- 10
attire. The dots are the data points, while the straight [11
:s are least-squares fits to the points. For these data at " 8 [0
st seven measurements of each sample showed that the 1 " 0]

roducibility is better than 6%. The slopes of these lines, C 6
1, are presented in Table III. From the slopes K, is

-ulated for the principal directions and the results are 4 -

2

3LE 1. Values of (poW 2
); for vanous propagation modes _ ___"_•___. . . .

le [110] [110] shear [1101 shear (1J fill] I0 1 2 3 4 5 6

long IITO] pol lo001I poI long shear A 2 (10 M2
11

4,2); 4.98 -0.090 0 750 4 90 0 130I

*0.050 *0.016 ±0038 ±0.29 ±0.049 FIG 2 A as a function of A" from the room-temperature SHG measure-

men is
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TAI§LE Ill. Values of the slopes 8A,/,aA for different propagation di- TABLE IV. The room-temperature values off., K,. and K3 deduced from
rections (units are 107 m-). SHG measurements (KW and K3 are in units of GPa).

(100] [1101 [11I] Propagation

1.591 ±0.025 1.865 ±0.016 0.958 ±0.035 direction K, K,

1100] 118.4 2.3 -628: 54 -622
1110] 145.2 5.62 -1251±7 -1252
fill] 154.2 4.19 -1108±23 -1124

stretch angle-bend constant c. The model has been ex- 'Reference 5.
tended to the zinc-blende structure, and in this case the
three SOEM and the six TOEM are given by the following
expressions: Coulombic long-range interaction. In Table VI the short-

a + 3fl Z 2q2  range and Coulombic contributions to the various TOEM
ct• - 4 .0 5 3 -- , at room temperature are shown. As can be seen, except for

C14 and C155 and possibly Ct 23, the long-range Coulombic
a-fl Z2q2  contribution is completely negligible.

a • 5.538 Since there are only three adjustable parameters for the

z22 six TOEM in the Keating model, from the three measured
C 44____ q values of K 3 one may determine all three third-order force

a(a+fl) ( 3a constants y, 5, and E, and thus calculate all six TOEM. In

C, 11t =,y--+ 9 + 17.207 (Z2q2/a4), Fig. 5, the values of y, 6, and c as a function of temperature
are shown as calculated from the data of Fig. 4. It is in-

C, 12 = y--+ + 1.531 (Z2q2/a4), teresting to note that while 6 and E are nearly constant over

the whole temperature range, y exhibits a considerable

C| 23 =y+3b-3c+24.663(Z 2q2/a 4 ), variation. In Figs. 6 and 7, the values of the TOEM as
calculated from the third-order force constants 6, e, and y

Ct,=r(1_ 2 ) +(1+g 2 ) +E(l1+)(3g--1) in Fig. 5 are shown. The curves are a fifth-order polyno-

a-fl 0 2 Z 2q2  mial fit of the data. The TOEM CII 2, Ct23, and C1 55 show

+ ý"- (24.6,63-33.526•--0.820) -7-- considerable variation over the temperature range mea-
a a sured. The other three TOEM are nearly linear functions

of temperature in the range 77-300 K. A comparison of the
C155=y(l-ý)

2-6(l±ý 2) +c(l+ý)(3-g)+ - ý2 values of the TOEM in Table V and those read from Figs.a 6 and 7 is a good test of the validity of the Keating model
Z 2q2 at room temperature. Such a comparison shows that all of

+(1.531-33.526-+ 10.062g2 ) a--- the TOEM in Figs. 6 and 7 except C,4 are within the

errors stated in Table V. Closer examination of the values
C 456=y(l--)3 + (24.663-50.288±+42.753ý 2  for C144 given by the diferent authors listed in Table V

Z 2q2  shows a wide range of measured values. C14 appears to be

- 19.203g 3) -a,-, the most uncertain of the TOEM.

S(a -f)/a 10-lO058(Z2q/a4) B. Cauchy relations

(a+fl)/a ]-4.189(Z2 q2 /a (7) If all lattice interactions are of central force type, and

Here, a is the lattice constant of the unit cell, Z the effec- each atom is a center of symmetry, the elastic moduli
tive charge number,16 and q ýhe electronic charge. The should obey the Cauchy relations. For the SOEM and
terms containing Z2q2/a" are the corrections due to the TOEM, these relations are as follows:

TABLE V. Room-temperature values of the TOEM (units are GPa)

C111 C112 C17 Ct• CI, C 5,•

Present work - 628 ± 54 - 387! ±27 -- 90± 62 24 t 1- 2695 -44± 20
MeSkimin and
Andreatch' -627 387 - 7 2 IQ)

Drabble and

Brammere - 67S 4())•• 4 V:
Abe and Imat - b20 194 4 2 44

'Reference 5

bReference 4

'Reference 6
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6 *6 TABLE VI. Short- and long-range interaction contribution to the rooc. I
[1 0 temperature TOEM (units arc GPa)1

S 5 C111  C,,., CID C'" C, 5, C.

Short range -627 -386 -79 42 -219 -41

Long range -l -I -Il -S1 -50 -3

< 3 and the deviations from the Cauchy relations are due t Io
11001 thermal effects. An analogous observation has also been

made for germanium and silicon.'

0 1o0 200 300 C. Equation of state
TEMPERATURE (K) By using the measured values of the TOEM, an equa-

tion of state (pressure-volume relation) for the material

FIG. 3. Nonlinearity parameter ,6 as a function of temperature. may be constructed. One of the simplest and most straight- 1;

forward is the Murnaghan equation of state, t8

C12 =c44, C,,2=C, 55, C123=C 144=C456 (8) V=( (+ B; p t/fo) (1

If, in addition to the above conditions, the short-range re- -= \ 0  BO(

pulsive interaction is the dominant one, there are addi- where Bo is the bulk modulus and BO its pressure deriva-
tional relations between the elastic moduli,' 7 the so-called tive, both at P=0. BO is given by
"strong Cauchy relations," which are - (1180) (Cl -!C 3 ). (12)

CI 2C12 =2C4 4 , The Murnaghan equation of state for GaAs, Eq. (11 ), is

C, I I = 2C, 12 = 2 C, 55 , (9) shown in Fig. 9. The dot on the figure is the experimentally
determined volume at the onset of 17.2 GPa phase transi-

C13  C14= C456 0. tion. As can be seen, the Murnaghan equation of state

From Eqs. (8) and (9), one obtains the following expres- predicts a somewhat higher compressibility than thc me-a-
sions among the TOEM: sured one.

Cl,2 +4CI5 5 =1TC,, 1  C 123 +6C, 55+8C 456 =0. (10) D. Mode Gronelsen gamma and GrOnelsen constant

In order to examine the validity of the "strong Cauchy The TOEM are closely related to the mode Gruneisenrelations" for GaAs, the values of sC, 1 ChTEMar coslyreatd o hemoe andes
ran fGs Ci, C112+4C55, and gammas and the Griineisen constant.7 Within the frame-C123 + 6C144 + 8C 456 as a function of temperature, evaluated work of the anisotropic continuum model, 7 the mode Grij-

from the data shown in Fig. 4, are presented in Fig. 8. As neisen gammas may be expressed as
can be seen, there is a tendency for a better agreement with
the Cauchy relations as 0 K is approached, although there y(pN) = (Bo1/2w) (po W2);. (13) t-
appears to be reasonable agreement at room temperature.
Since both the Keating model and the Cauchy relations
should strictly apply only at 0 K, this may indicate that the
lattice interaction in GaAs is basically of the central type, • 200

100

-600 < 0-
[1001

Z -100

-800.
SU -200 -
U
"" -300o

-400-

.1 2 0 0 . 1 1" " -5 0 0
C
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FIG. 5 The third-order force constants y. 6. and ( as a function of
FIG 4. Third-order coupling constant K, as a function of temperature temperature
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"200 0
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C 144 • C +6C +8C %

-200- 0 123 144 456 •

o400 o C +4C
112 155

-400 _C -.__ 1500

U 5/2 C

0 100 200 300 000
I100 200 300

T P (K)TEMPERATURE (K)

FIG. 6. The three .TOEM, Cm, I.C, 2, and C,"4 as a function of temper-
ature. FIG. . Measured ombinations of the TOEM compared with those de-

rived from the Cauchy relations, as a function of temperature.

Here, N is a unit vector in the propagation direction and p -1

the polarization index (p= 1,2,3). For a cubic material ,= X dfl Y(p,N)C(pN) fJdfl y(p,N)
y(p,N) may be expressed as (18)

y(p,N) = -- (l/6w) (3B 0+2w+k), (14) In this expression, C(p,N) is the heat capacity of the (p,N)
where mode, i the spherical angle, and the integration is carried

out over the irreducible part of the Brillouin zone, i.e., the
w(p,N) =c 1 KI +c4 4K 2 +c, 2K 3, (15) spherical triangle whose apexes are [100], [110], and [111].

The mode gammas for some crystalline directions of
k(,,N)=CIKI+C2K 2 +(CI--C3 )K 3 , (16) high symmetry are presented in Fig. 10. It is noteworthy

and that the mode gammas for the slow shear mode become
negative for certain directions. This raises the possibility

K (p,N) =NIUI+N'2U+N3P, that the thermal expansion will become negative at low

K2(P,N) = (N2U3+V3U2)2+ (N3UI + N'I U3) 2 temperatures, since this is the lowest-energy mode, andsince the lowest-energy modes are the ones excited at low

+ (N1 U 2 +N 2 U1 )2, (17) temperatures. This is borne out by the observation that the
thermal expansion19-22 of GaAs becomes negative around

K 3(p,N)=2(N 2N 3 U 2 U 3 +N 3N1 IU 3 UI +NIN 2 UIU 2 ). 40 K.

The mode Griineisen gammas may be related to the Gru- In the limiting cases of low and high temperature Eq.
neisen constant, 7 rO, (18) simplifies significantly, and the corresponding values

of r are given by

100- 1.05-

C
0o 456

-100 0 o 0.959. 00 % 0

-200 123 •0.90

-300 
0.85

155 0.80-

-400 0 5 10 15 20
0 100 200 300

T... RA•. hRE (,X

FIG. 9. Mumaghan equation of state for GaAs. The date point is an
FIG. 7. The three TOEM, Cin. C,, and C4,, as a function of temper- experimentally determined volume at the onset of the 17.2 GPa phase
flure. transition.

M7 1 A- f--- w .• . . .



2 -2TABLE VII. Elastic and thermal value of the low- and high-temperature

limits of the Griineisen constant.
LONGITUDINAL

YL Yif

1 Elastic 0.38 0.66
FAST SHEAR Thermal 0.60 0.70 (300 K)

0

C
0 0_

SSLOWSHEAR materials; especially the other Ill-V compounds. This pro-
duces the temperature dependence of the TOEM of III-V
compounds even in the absence of direct measurements of
all of them.-1* .
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ELECTRIC POTENTIAL IN PIEZOELEC- 2-0 (3)

TRIC MEDIUM AND ITS INFLUENCE ON
MEASUREMENT OF ULTRASONIC NONLIN- Moreover. in addition to incident and reflected waves
EARITY PARAMETER there should be a reflected evanescent wave 4e In the

piezoelectric medium in order to fulfill the boundaryVenima JIAP*. Gooshuan DlU* and Rack A. REKAZEALETM  conditions Ni 4e satisfies Eqs.(U) and (2) with the

%he Institute of Acoustics. Nanjing University. solution of u=0, and #,,a.

Nanjing 210008, China
*The National Center for Physical Acoustics, Coliseum 0I~K-CIRCUIT
Drive. University. NS 38677, USA In open-circuit case, the bottom surface of sample

INTRODUCTION is usmetallized. The solution for reflected evanescent
wave is

In the experiment of second harmonic generation #.-A.(zih) (4)
(S6). the capacitive detector Is used to masire abso-
lute amplitude of acoustic wave.tllThe assembly of the here h is penetration depth of # i.e. #e4O then z-h. The
detector and sample can be simplified as shown by Fig.l. solution of one-dimensional Laplacian equation is
Usually the capacitive detector is mechanical displace- #,-A/(Z-c) 4,
sent sensitive. Vhen the sample is piezoelectric, how-
ever, it has been observed that capacitive detector gives
output even there is no DC-bias applied to it.12! In the hich als satisfies that shen z~d. *c is thepotential developed at load Y. &Ise of boundary conditions
present paper, the origin of the no DC-bias output is p ivesr

discussed and its influence on the measurement of ultra- gives:

sonic nonlinearity parameter p is estimated. The calcula- -JkWA.k•,, ÷eA.. O (6.a)
tion is compared with experiment. Although the analysis
is done only for longitudinal wave along Z-asis of e.-&1 A,+_--3_-_ +Ah..c-A'*d
crystal LibO3. the procedure of the analysis can be Ba4A3.b
easily extended to any piezoelectric medium as long as
there exists a piezoelectric-stiffened wave in certain -t,,A=-%A'. (6.c)
direction. In addition. the circuit equation

ELECTRIC FIELD IN AIRGAP 41r+ M÷ S) .0

Crystal Li~b0 3 has syemetry of 3m. The longitudinal should be applied. Here, As and s are amplitude of
wave along its crystallographic Z-axls is piezoelectric- i
stiffened. Vitbout loss of generality one dimensional

surface area of detector button. By solving 199(0) the
problem is treated here because most of 56 experiments folloaing results are obtained: s
are performed for pure lonzitudinal wave direction. Hence
the coupling equation of particle displacement u and. B 1  2K e. (7)
electric potential # can be expressed as: A. ((k2-kd&1 ) '- (kdx,) ( 7/2

P 0 -P U -"-±- • .e• z
p0!cJe 2~ Ke (IA (8

a 'u a. + A D F 12 2.. ?J ! b k.kxi (k d z) 21 l i A 8

J& azz ZT
Here

Here T3 Land D are the stress and electric displacement -e.g-- %k x, -kK ,'2,.( Yr
associated with nonlinear constants of the medium. * d

According to Fig.l. there is mechanical boundary S -2hr!

condition of stress-free. The electric boudsa•y condi- e, d d y2
tloqs consist in contlnuit, -if 4 = &, 4 -
O.* depending on either the bottom surface of the sample 1+K" '_ CJ"e33
is short or open circuited. Only the linear part of the ÷
solution is given here. 2i the eb coupling factor.

In the airgap between sample and detector button Its electromechanical
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Nonlinear Techniques for Nondestructive Evaluation of Composites

Mack A. Breazeale
National Center for Physical Acoustics

Coliseum Drive
University, MS 38677

ABSTRACT

Over the past quarter-century we have developed techniques for evaluation of the

nonlinear properties of solids. In crystalline solids we can evaluate third order elastic

constants in reliable fashion. Our technique makes use of harmonics generated by the

nonlinearity of the medium as finite amplitude ultrasonic waves propagate. Some of our

recent measurements with silicon and germanium, two diamond lattice solids, are

mentioned by way of illustration.

Recently we studied the nonlinear behavior of PZT which exhibits a very large

nonlinearity parameter. These results are described in more detail, and the implication of

them for development of nonlinear techniques for nondestructive evaluation of

composites is stressed.
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L INTRODUCTION

There are many types of nonlinearity. In both plasma physics, and optics one can

find electromagnetic nonlinearities. The nonlinearity we are interested in, however, is

thermodynamical or mechanical The first thermodynamical (or acoustical) nonlinearity

studied probably was that of Poisson in 1808. Poisson1 studied the propagation of sound

waves of finite amplitude in an ideal gas. The first study of the propagation of ultrasonic

waves of finite amplitude in liquids probably was that of Fox and Wallace 2 . Subsequently

Keck and Beyer developed a theory for fluids3 , and many people have done useful

experiments 4, often under funding of the Navy. The foundation of the study of the

nonlinear properties of solids by ultrasonic techniques was laid by the definition of third

order elastic (TOE) constants in the 1960's. Since that time in my laboratory we have done a

number of experiments that suggest to us that nonlinear properties of composites might

provide the basis of their nondestructive evaluation, and possibly even nondestructive

evaluation of heat damage in them.

In this paper I propose to describe pertinent aspects of what we have done in the

past, define the relationship between our past experience and characterization of the

nonlinear behavior of composites, and finally, to give some recent results obtained in our

laboratory with graphite epoxy composites.

IL THEORY

A. Linear approximation-Hexagonal Symmetry

In order to derive the linear wave equation one can simply define the elastic

potential energy in terms of the elastic constants:

V11) .L i1 . (1)
. !ijkl

This strain energy substituted into Lagrange's equations gives the linear wave equation for

principal directions a:

I, -. • II | |1
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where K2 is a linear combination of elastic constants. Our experience leads us to assume

that epoxy composites will'be describable in terms of equations appropriate to hexagonal

symmetry. To evaluate the elastic constants of composites we propagate ultrasonic waves

along the x3 axis. In this case

pv2 (OOI) = C33 for longitudinal waves (3)

and

Pv 2 (l00) = C44 for transverse waves. (4)

For propagation along any direction perpendicular to the x3 axis

pv 2 (100) = C11 for longitudinal waves (5)

and

pv2 (100) = C44 for transverse waves polarized in the (001) direction (6)

pv 2 (100) = 1(C 1 - C12) for transverse waves polarized in the (010) direction (7)
2

B. Nonlinear approximation - Cubic Symmetry

Most of our experiments on the propagation of finite amplitude ultrasonic waves

have been done with solids of cubic symmetry, although we have worked out the nonlinear

theory for any symmetry5- To describe our experiments, then, it is necessary only to state

theoretical background for cubic symmetry. We begin again with the elastic potential

energy, but now keep higher order terms:

2 ijkl ijklmn

Now we define the Lagrangian function

I' ' m|



Li =Opa~j (r) (9)

and substitute into Lagrange's equations:

0L (10)
dt ax) +k ak ax,~1=

aak

The result is that for principal directions in a cubic crystal we can write the nonlinear wave

equation in the form

aU (a2 U) au a'U
-- K2 + (3K 2 + K3) (U1)

Sa2  aa aa2

where expressions for K2 and K3 for a cubic lattice are given in Table I.

Table I. K2 and K3 for principal directions in a cubic crystal

Direction K2 K3

11001 Cll Cill

[110 CII + C12 + 2C.4 CII1 + 3C 112 + 12C166
2 4

[111] CII + 2C12 + 4C44 C111 + 6CI 12 + 12CI44 + 24CI 66 + 2C123 + 16C 456

3 9



The solution of Eq. (11) pertinent to the present discussion is obtained under the

assumption that a sinusoidal disturbance is generated at a = o. At a distance a from the

sinusoidal driver the solution takes the form

U U=Al sin(ka - ot) - +K2  ]mAk2acos2ca- cot)+.-- (12)
n [K2

Our procedure involves the measurement of the amplitude of the fundamental Al and the

amplitude of the second harmonic

A2 =- 3K 2 + K3 A2k2a (13)
K2

The nonlinearity parameter is defined as

3K 2 + K3  (14)K2

From Eqs. (13) and (14) we can define the nonlinearity parameter in terms of measured

quantities as

S2 (15)Ajk2a

In order to determine the nonlinearity parameter, then, we need only to measure the

amplitudes of the fundamental and that of the. second harmonic A2. The propagation
constant k = can be determined from the frequency and the sound velocity. The

quantity a is the sample length.

III MEASUREMENT TECHNIQUE

Measurement of the amplitudes of the fundamental and the second harmonic can be

made with a variation of the capacitive microphone as shown in Fig. 1. The detector button

produces an air gap of the order of 10ýl between the button and the end of the sample. This

" ' I I
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Figure 1. Capacitive detector for measurement at room temperature.

parallel plate capacitor is very sensitive. It allows us to measure amplitudes as small as 104

Angstroms. The detector is used in the apparatus shown in Fig. 2 for the measurement of

fundamental and second harmonic amplitudcs.

IV. RESULTS

Measured nonlinearity parameters as a function of temperature are shown in Fig. 3.

The temperature dependence is relatively small so one can correlate different crystalline

structures and bonding with the magnitudes of the nonlinearity parameters. In most

materials the magnitudes of the.nonlinearity parameters are between 2 and 15. Table II
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Figure 2 Experimental arrangement for measurement of the nonlinearity parameter.
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Table IL Comparison of ultrasonic nonlinearity parameters

MA"•EIAL BONDING Pav
OR STRUCTURE

Zincblend Covalent 2.2
Fluorite Ionic 3.8
FCC Metallic 5.6
ICC (Inert gas) Van der Waals 6.4
BOC Metallic 8.2
NaCi Ionic 14.6
Fusod Silica Isotropic -3.4
YBa2CU307. Isotropic 14-3
Ceramic

gives a correlation between average nonlinearity parameters and crystalline structure.

Zincblend, or diamond lattice solids with covalent bonding, have the smallest nonlinearity

parameters of about 2, and NaCI with ionic bonding has the largest nonlinearity parameter,

14.6. The difference between nonlinearity parameters is real. Therefore variations of

nonlinearity parameter may be correlated with material behavior and ultimately may serve

as basis of a nondestructive evaluation technique for these materials, and possibly others

such as composites.

A. Correlation of results for diamond lattice solids

In order to test specific results on diamond lattice solids we evaluated nonlinearity

parameters of silicon and germanium. From Table I we were able to isolate specific

combinations of third order elastic constants. The combinations we could isolate are shown

in Figs. 4 and 5. The fact that the temperature behavior of these two diamond lattice solids

is similar indicates that our data are meaningful. In addition, we were able to evaluate the

behavior of the third order elastic constants of a central forces, nearest-neighbor model. For

such crystals C112 + 4 C166 = 5/2 Cl1 and C123 = C 144 = C456 = 0. Examination of Figs. 4 and 5

reveals that such relationships are approached at absolute zero of temperature for both

1' i | I I I
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Figure 4. Third order elastic constants Figure 5. Third order elastic constants
of silicon. o emnunof st~o•of germanium.

silicon and germanium. This is consistent with independent information about the two

A further test of the validity of the data can be made if all six third order elastic

constants can be isolated from the data. We isolated all six third order elastic constants,

then used them to calculate the Grdineisen parameter which can be determined

independently from thermal expansion data. The comparisons are shown in Figs. 6 and 7.

The minimum that shows up in the thermal experiment at approximately 0.1 0 (where' 0 is

the Debye temperature) is reproduced by our data at the proper temperature. Note that our

data are better than those of other experimenters in this respect. One can conclude,

therefore, that the magnitudes of the nonlinearity parameters can be correlated with real

physical behavior of silicon and germanium.
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Figure 6. G rTineisen parameter of silicon. Figure 7. ,Graineisen parameter of
germanium.

B. Effect of Material Behavior on Nonlinearity Parameter

The effect of material behavior on measured values of the nonlinearity parameter can

be illustrated by recent measurements in PZT. As is wenl-known near the Curie

temperature PZT goes from the room-temperature symmetry (which can be either

rhombohedral or tetragonal, depending on the ratio of PbTi0 3 to PbZrO3) to cubic symmetry.

This atomic rearrangement is somewhat analogous to what happens in metals during

work-hardening.

Measured values of the nonlinearity parameters of two samples of PZT are shown in

Figures 8 and 9. In Fig. 8 the S1 sample goes from rhombohedral to cubic at the Curie

temperature. In this case the nonlinearity parameter goes from P - 4 at room temperature

to 0 - 250 at the Curie temperature. In Fig. 9 the nonlinearity parameter of K1 PZT is shown

to go from its room temperature value of • 8 to • '1500 at the Curie temperature as the

pAI 
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sample goes from tetragonal to cubic symmetry. Such large variations in the nonlinearity

parameter are associated with molecular rearrangements in the materials themselves. Such

reprrangements also may take place in Heat damage to composites. This hypothesis

suggests that measurement of the nonlinearity parameter of composites might be a very

; useful experimental program. It could result In a completely new nondestructive

evaluation technique. Such a -technique would depend on variation in nonlinear

properties of composites, information that heretofore has been Ignored.

C Experimental results with composites.

As a preliminary set of experiments we have measured the velocity of ultrasonic

waves in graphite epoxy rods. The results are shown in Table IL It is to be noted that the

velocity of ultrasonic waves along the fiber direction (axial velocity) is three times the

velocity along a perpendicular direction (radial velocity). If one assumes that the hexagonal

model Is appropriate, then this velocity difference translates into a factor of 10 in the ratio of

the elastic constants, since

q =pV2

Such velocities should be measured with samples that actually are subjected to heat

damage. A first test of the value of the hexagonal model of graphite composites would be to

determine the result of heat damage on this ratio of velocities.

Table i3L Measured ultrasonic velocities and elastic constants of graphite-epoxy composites.

PROPAGATION COMPRESSIONAL ELASTIC
DIRECTION VELOCITY CONSTANT

(M/S) (DYN/CM2)

AXIAL 808889 C33 = (1.074 ± 0.031) x101 2

RADIAL 2535± ±59 C11 = (0.1046 ± 0.056) x 1012

p= 1.6 27+0.011 g/ cm3



/

D. Nonlinear measurements in composites

Although experimental research is yet to be done on the nonlinear properties of

composites, a theoretical basis for it exists. We have calculated the behavior of

contributions to the nonlinear behavior of crystals of all symmetries. For hexagonal

symmetry we find that the velocity is the same in all directiorn in the basal plane. In

contrast, our calculations show the behavior of the third order elastic constants in the basal

plane given in Fig. 10. For the [100] direction the appropriate third order elastic constant is

C111. For the [010] direction it is C222. Since in general C2 * CIII for hexagonal symmetry,

the six-fold symmetry is in evidence in the nonlinear behavior of a hexagonal crystal even

though it may be unobservable in the velocity, a linear phenomenon.

£010)

iii

bI

Figure 10. Third order elastic constants in the basal plane of a hexagonal crystal.
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"V. CONCLUSION

Variations in the nonlinearity parameter already have been correlated with ultimate

yield strength of cubic solids, with hardness in steels, with crystalline structure and bonding,

and with thermal expansion coefficient. Some experimental results taken in our laboratory

are discussed and are shown to indicate that measurement of the nonlinear properties of

composites could result in a very sensitive technique for nondestructive evaluation of

composites. Such a technique might be sensitive enough to detect heat damage in

composites long before it can be detected by other techniques.
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Graduate Fellowships

Principal Investigator: Lawrence A. Crum

Research Accomplished in 1992:

The National Center for Physical Acoustics is an integral part of the University of

Mississippi, which as a strong reputation for its graduate programs in physics, mathematics, and

engineering. Recruiting qualified US students into a Ph.D. program with research emphasis in

acoustics is a high priority for NCPA. The NCPA fellowship program was developed with the

hope that outstanding undergraduates would be identified and attracted to the University for

specialized training in acoustics at NCPA. By offering these young scientists hands-on

experience in this discipline, they would upon graduation be capable of filling positions in Navy

Laboratories and/or facilities that conduct work relevant to acoustics.

In FY 91 and 92, NCPA received funds from the Office of Naval Research to administer a

graduate fellowship program in acoustics. A limited number of applicants were awarded

fellowships because of the high criteria we set for admission to this program and due to the

limited number of available awards. The criteria for admission were revised further in 1993.

We believe that this program has given more visibility to acoustics as a specialization in physics,

and that visibility is in the best interests of the Navy.

Six NCPA Fellows were supported by these funds in the past year. These were:

Adam Calabrese. Mr. Calabrese is continuing his work in transient microcavitation under the

direction of Professor Crum at the University of Washington. He remains a student in the

Univti-sity of Mississippi graduate program. Mr. Calabrese expects to graduate in 1993.

Paul Elmore. Mr. Elmore's Ph.D. research involves studies of nonlinearities in crystal

structures. His research is directed by Dr. Mack Breazeale. Mr. Elmore successfully

completed the comprehensive examinations in the fall of 1992 and expects to graduate in

December 1994.



Jay Lighifoot. As a freshman graduate student, Mr. Lightfoot performed extraordinarily well in

freshman graduate courses in physics. His research in the area of active noise control was

directed by Dr. Shields from January through July. Mr. Lightfoot changes research areas in

August 1992. He is now performing research in the general are of thermoacoustics under

the guidance of Dr. Henry Bass and Dr. Richard Raspet. Mr. Lightfoot will take the

comprehensive exams in the fall of 1993.

Keitk Olree. Mr. Olree has also proven to be an outstanding graduate student. He is also doing

research in active noise control under the direction of Dr. Shields and will take the

comprehensive exams next fall.

Daniel Warren. Mr. Warren has successfully passed the comprehensive examination and has

defended his
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